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Abstract. The result of photodynamic action significantly depends on the 
density of the light dose absorbed by the photosensitizer. The efficiency of 
using light to excite photosensitizer molecules and minimization of its loss 
plays an important role in ensuring the overall success of the process. When 
carrying out photodynamic treatment of thin sensitized layers (such as 
inactivation of surface pathogens or in vitro screening studies of 
photosensitizers), only a part of the light dose is absorbed in the layer, while a 
significant part is lost, especially at low concentrations of the photosensitizer. 
In this work, we evaluate the decrease in absorbed light dose depending on 
the extinction and concentration of the photosensitizer in a thin sensitized 
layer, the shape of its absorption spectrum, and the shape of the excitation 
light source spectrum. It was found out that a significant loss of the absorbed 
dose occurs upon excitation of photosensitizers, especially with low 
extinction, when using light sources with a broad emission spectrum. This loss 
must be taken into consideration when predicting the results of photodynamic 
exposure and optimizing its tactics. © 2021 Journal of Biomedical Photonics & 
Engineering.  
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1 Introduction 

Photodynamic action (PDA) is widely used for the 
therapy of neoplasms [1, 2], infected wounds and other 
pathological foci of various etiologies [3–5], disinfection 
of biological fluids, blood components, and water [6]. 
The photodynamic effect is the photooxidative 
destruction of molecular structures that ensure the 
functioning of tumor cells and pathogens (bacteria, 

viruses) by reactive oxygen species (ROS). Molecules of 
a photosensitizer (PS) that sensitize the environment in 
the affected area catalyze the generation of ROS in their 
vicinity upon excitation with light. The light transfers the 
energy necessary for this process to the medium 
containing the photosensitizer. The effect of PDA 
increases with the volume density of the energy absorbed 
by PS, which depends on the light intensity, the 
concentration and extinction of PS.  
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Light-emitting diodes (LED) and lasers, primarily on 
laser diodes (LD), are widely used as light sources for 
PDA. These light sources provide radiation with high 
intensity, and their emission spectrum is narrower 
(ΔλLED = 20 – 30 nm, ΔλLD = 4 nm) than the absorption 
bands of PS. Such light sources can be created, in general, 
with practically any wavelength (at least in the red and 
near-infrared spectral ranges) suitable for the excitation 
of PS. Broadband light sources with a spectral band 
selected by a bandpass filter in the PS absorption region 
can also be used for the excitation of PSs [7]. However, 
only the part of the light energy that lies in the spectral 
region of the PS absorption band is absorbed. The rest of 
the light passes through the sensitized medium. 

Many PDA problems require the PS excitation in thin 
(≤ 5 mm) layers of sensitized aqueous compositions. 
Such problems include photodynamic inactivation of 
pathogens – viruses or bacteria, on various surfaces 
[8, 9], in vitro screening studies of PS properties [10, 11]. 
For small layer thicknesses and low (less than 10 μM) PS 
concentrations used for such a PDA, a significant part of 
the light in the spectral range of the PS absorption band 
can pass through the layer without participating in the 
PDA process. This loss, which can be described as a 
decrease of relative absorbed photodynamic dose 
(RAPD) [12], results in decreased PDA efficiency. It can 
also lead to errors in screening studies of PSs with 
various extinction and concentration since both the losses 
and the amount of the absorbed energy in the sensitized 
medium for different PSs will be different.  

2 Materials and Methods 

In this work, such an assessment was carried out for 
aqueous solutions of cationic PS, which are distinguished 
by high values of extinction and quantum yield of ROS 
generation: methylene blue, C16H18ClN3S 
(ε664 = 0.61 × 105 M−1cm−1);  
zinc octakis(cholinyl)phthalocyanine, ZnPcChol8 
(ε682 = 1.7 × 105 M−1cm−1); meso-tetrakis[1-(2'-
bromoethyl)-3-pyridyl]-bacteriochlorin tetra-bromide, 
(3-PyBrE)4BCBr4 (ε762 = 1 × 105 M−1cm−1). These PS do 
not aggregate in a wide range of concentrations and are 
promising both for photodynamic inactivation of 
pathogens [6, 8, 9, 13] and for antitumor photodynamic 
therapy [10, 14, 15]. Fig. 1 shows the normalized 
spectral contours A(λ) of the absorption bands of these 
PSs (the absorption spectrum at low concentration 
divided by its maximum value) and the normalized 
emission spectra Inorm(λ) of LEDs (mLED-664, 
mLED-684, mLED-763, Biospec, Russia), which can be 
used to excite these PSs (light intensity spectral density 
divided by the integral intensity). 

The estimates of the RAPD in a non-scattering layer 
with the thickness L, obtained in the approximation that 
the spectral characteristics of PS absorption are 
independent of its concentration, lead to the following 
relation characterizing RAPD parameter η, equal to a 
ratio between the light energy absorbed in the layer and 

total light energy illuminating the layer during the PDA 
process: 

η = 1 −
∫ &(λ) × +!".$	&((),λ(!
("

∫ &(λ)	,λ(!
("

, 
(1) 

where 

/(λ) = 01(λ)23. (2) 

Here D(λ) is the optical density of the layer 
containing PS, ε and C – extinction and molar 
concentration of PS, λ1 and λ2 are the boundaries of the 
spectral range in which the spectrum of the radiation 
source lies, I(λ) is the spectral density of the light 
intensity. 
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Fig. 1 Normalized spectral contours (1) of the absorption 
bands of photosensitizers (a – C16H18ClN3S, 
b – ZnPcChol8, c – (3-PyBrE)4BCBr4) and normalized 
emission spectra (2) of LEDs for their excitation. 
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For a broadband light source with a bandpass filter 
that illuminates in the range from λ1 to λ2, the Eq. (1) 
becomes  

η = 1 −
∫ +!".$	&(()	,λ(!
("

λ" − λ*
. (3) 

For a monochromatic or narrow-band source, the 
spectral half-width of which is much smaller than the 
absorption spectrum half-width, the Eq. (1) is simplified 
to 

η = 1 − +!".$	&((). (4) 

3 Results 

The estimates obtained using these formulas show that 
when thin layers of the studied PS with a concentration 

below 10 μM are irradiated, a significant part of the light 
energy is not absorbed. Instead, it passes through the 
sensitized layer. RAPD depends on the PS’s extinction, 
its concentration, the spectral shapes of the PS’s 
absorption and the source emission (Figs. 2, 3). The 
highest values of RAPD are achieved upon 
monochromatic excitation at a wavelength coinciding 
with the spectral absorption maximum of the PS. When 
using LEDs with optimally selected radiation 
wavelengths, the difference in the value of RAPD is 
small. However, when using a source whose radiation 
wavelength is noticeably different from the wavelength 
of the spectral maximum of the absorption band of the PS 
(even within the boundaries of the band), RAPD 
decreases significantly, especially for PS with a narrow 
absorption band. RAPD of broadband sources with 
transmission bandpass filters in thin layers is much 
lower. The values of RAPD for light from such sources 
can be 1.5–2 times lower than from narrow-band sources. 
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Fig. 2 Dependence on the layer thickness of RAPD for sources with the wavelength of the maximum radiation coinciding 
with the wavelength of the spectral maximum of absorption of PS with two concentrations: (a) C16H18ClN3S, 
(b) ZnPcChol8; (c) (3-PyBrE)4BCBr4; 1, 2, 3 – concentration of 10 μM, 4, 5, 6 – concentration of 3 μM; 1, 4 – laser; 
2, 5 – LED; 3, 6 – broadband radiation source with a bandwidth of 100 nm. 
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Fig. 3 RAPD of the sensitized PS layer with a thickness of 5 mm depending on the wavelength of the spectral maximum 
of the light source (1 – laser, 2 – LED). PS concentration is 10 μM: (a) C16H18ClN3S, (b) ZnPcChol8; (c) (3-PyBrE)4BCBr4. 

 
4 Conclusions 

The estimates demonstrate that during PDA in thin 
sensitized layers, a significant part of the exciting light 
leaves the layer without being absorbed, and RAPD 
depends on the layer thickness, PS extinction and 
concentration, as well as the shape of the exciting light 
and absorption spectral bands of PS. The loss of a part of 
the light energy reduces the efficiency of the PDT as a 
whole. This loss must be taken into account when 
predicting PDA results and optimizing its tactics, 
particularly when choosing light sources and parameters 
of irradiation for photodynamic disinfection of surfaces 
from viral and bacterial infections [2, 5], or clinical 
photodynamic treatment to local virus-infected 
foci [5, 6]. The obtained results are also important for 
in vitro studies and comparing the photodynamic 
efficiency of PSs [10, 14] since the values of RAPD are 
very different for PSs with different extinction, especially 
when using broadband light sources. However, it should 
be noted that for in vivo studies of antitumor PDA, it 
becomes necessary to consider the scattering properties 

of the medium for evaluating RAPD. Photodynamic 
effectiveness also becomes more dependent not only on 
RAPD but on photochemical and photobiological factors 
as well. High absorption and scattering would also result 
in greater depth inhomogeneity of PDA in thick 
sensitized layers or solid tumors, reducing the overall 
effectiveness of the treatment. 
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