
Research Article
A Comparison of Sparse Partial Least Squares and
Elastic Net in Wavelength Selection on NIR
Spectroscopy Data

Guang-Hui Fu,1 Min-Jie Zong,1 Feng-HuaWang,2 and Lun-Zhao Yi 2

1School of Science, Kunming University of Science and Technology, Kunming 650500, China
2Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan 650500, China

Correspondence should be addressed to Lun-Zhao Yi; yilunzhao@kmust.edu.cn

Received 29 April 2019; Revised 23 June 2019; Accepted 2 July 2019; Published 1 August 2019

Academic Editor: Jiu-Ju Feng

Copyright © 2019 Guang-Hui Fu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elastic net (Enet) and sparse partial least squares (SPLS) are frequently employed for wavelength selection and model calibration
in analysis of near infrared spectroscopy data. Enet and SPLS can perform variable selection and model calibration simultaneously.
And they also tend to select wavelength intervals rather than individual wavelengths when the predictors are multicollinear. In
this paper, we focus on comparison of Enet and SPLS in interval wavelength selection and model calibration for near infrared
spectroscopy data.The results fromboth simulation and real spectroscopy data show that Enetmethod tends to select less predictors
as key variables than SPLS; thus it gets more parsimony model and brings advantages for model interpretation. SPLS can obtain
much lower mean square of prediction error (MSE) than Enet. So SPLS is more suitable when the attention is to get better model
fitting accuracy.The above conclusion is still held when coming to performing the strongly correlated NIR spectroscopy data whose
predictors present group structures, Enet exhibits more sparse property than SPLS, and the selected predictors (wavelengths) are
segmentally successive.

1. Introduction

One of characteristics of near infrared spectroscopy (NIR)
data is that the number of predictors is much more than
the size of observations. Taking corn data [1] as an example,
the number of predictors is up to 700 but the sample size
is just 80. Thus a problem in building calibration model for
NIR is how to select a set of important predictors among a
large number of candidate covariates. Wavelength selection
for spectroscopy is a classic topic [2] and many methods
have been proposed, such as VIP [3], MWPLS [4, 5], and
MC-UVE [6]. A drawback of the above algorithms is that
model calibration andwavelength selection are separated into
two steps: the calibration model is firstly established and
then the variable selection procedures are performed based
on the model from the first step. Recently, sparse variable
selection methods [7–16] have gained much attention for
dealing with high-dimensional data from various fields. One
of advantages of sparse methods is that they can perform

the model calibration and variable selection simultaneously.
In addition, sparse algorithm can shrink some estimation
coefficients to exactly zero, thus the predictors corresponding
to zero-valued coefficients are eliminated from the original
calibration model. This is extremely useful when coming
to model interpretation. Nowadays, there are many useful
sparse methods for addressing the NIR spectroscopy data
[17–23]. In this paper, we focus on two of them: elastic net [17]
and sparse partial least squares (SPLS) [18]. Both Enet and
SPLS can obtain sparse coefficients by choosing appropriate
parameters.

Another feature of NIR spectroscopy is multicollinearity
among the predictors.The neighboring predictors are contin-
uous wavelength intervals and they are highly correlated. In
this situation, the problem is that which strategy should be
accepted when doing the model calibration and wavelength
selection? In other words, to select a single wavelength each
time or an entire interval of strongly correlated and adjacent
wavelengths? On one hand, selecting the entire variable

Hindawi
International Journal of Analytical Chemistry
Volume 2019, Article ID 7314916, 12 pages
https://doi.org/10.1155/2019/7314916

https://orcid.org/0000-0002-1111-1510
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7314916


2 International Journal of Analytical Chemistry

group can obtain better calibration and prediction accuracy
compared with selecting single predictor from the group
when multicollinearity or high correlation is present in the
group variables [24–26]. On the other hand, the interval
of wavelengths among which the pairwise correlations are
strongly correlated should be regarded as a natural group
when this wavelength interval is associated with a particular
type of chemical bonding. So those predictors in the same
group should be in or out of the calibrationmodel simultane-
ously. For the above two considerations, the sparse methods
for NIR spectroscopy data should be able to handle group
variables (wavelength intervals) selection, which is called
group effect in [17]. Fortunately, both Enet and SPLS can
automatically group the multicollinear predictors and select
(or eliminate) the entire predictor group simultaneously
from the model. Therefore, Enet and SPLS are two potential
powerful methods which are suitable for addressing the NIR
spectroscopy data. In fact, many references [27–38] have
introduced Enet or SPLS to analysis of NIR spectroscopy
data. The purpose of this article is to compare the perfor-
mance of them when dealing with the NIR spectroscopy
data.

The remainder of this paper is organized as follows:
Section 2 offers the basic theory of Enet and SPLS. Sections
3 and 4 give the experimental results on simulation data and
real data sets, respectively. In Section 5,we give the conclusion
and make a brief discussion.

2. Theory of Enet and SPLS

2.1. Sparsity of Enet and SPLS. We consider the following
linear model for variable selection and estimation:

y = X𝛽 + 𝜀 = 𝛽1x1 + 𝛽2x2 + ⋅ ⋅ ⋅ + 𝛽𝑝x𝑝 + 𝜀, (1)

where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)𝑇 is the regression coefficient
vector. 𝜀 is usually the Gauss noise, namely, 𝜀 ∼ 𝑁(0, 𝜎2I).
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑇 is the response and X = (x1, x2, . . . , x𝑝)
is the predictor matrix, where x𝑗 = (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑛𝑗)𝑇 is
the 𝑗𝑡ℎ (𝑗 = 1, 2, . . . , 𝑝) predictors. For the simplicity, we
also assume that the response variable is centered and the
predictors are standardized to have zero mean and unit
length, namely,

𝑛∑
𝑖=1

𝑦𝑖 = 0,
𝑛∑
𝑖=1

𝑥𝑖𝑗 = 0,
𝑛∑
𝑖=1

𝑥2𝑖𝑗 = 1,
(𝑗 = 1, 2, . . . , 𝑝)

(2)

Traditional methods to obtain the regression coefficients in
the linear model (1) are ordinary least squares (OLS). The
solution of OLS 𝛽̂(𝑂𝐿𝑆) = (X𝑇X)−1X𝑇y generally has not
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Figure 1: Two-dimensional LASSO penalty (blue) and Enet penalty
(black). 𝛽̂(𝑂𝐿𝑆) is the ordinary least squares solution and the contours
reflect the estimates of 𝛽̂ with equal deviation in terms of squared
error loss. Enet penalty is strictly convex, so the optimal solution is
located in one corner of the Enet.

sparsity (the term “sparsity”, as used here, refers to the linear
model (1) having many zero-valued regression coefficients).
The OLS is often overfitting and has poor predictive perfor-
mance when applied to those highly correlated data. To date,
there are many ways to deal with this issue. The OLS with
the 𝐿1−norm constraint, which is called LASSO [7], may be
the most important one [39], as LASSO can perform variable
selection and estimation simultaneously.

Enet [17] is an improved version of the LASSO by using
doubly regularized parameters and can be expressed by the
following constrained OLS optimization problem:

𝛽̂(𝐸𝑛𝑒𝑡) = (1 + 𝜆2)
⋅ {argmin

𝛽
{󵄩󵄩󵄩󵄩y − X𝛽󵄩󵄩󵄩󵄩22 + 𝜆2 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩22 + 𝜆1 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩1}} , (3)

where 𝜆1 and 𝜆2 are two nonnegative regularization parame-
ters; ‖𝛽‖1 = ∑𝑝𝑗=1 |𝛽𝑗| is the 𝐿1-norm; and ‖𝛽‖2 = (∑𝑝𝑗=1 𝛽2𝑗 )1/2
is the 𝐿2-norm. If 𝜆2 = 0, Enet is exactly equivalent to
LASSO. The scale factor “1 + 𝜆2” should be “1 + 𝜆2/𝑛”
when the predictors are not standardized to have mean zero
and 𝐿2-norm one. Enet penalty “𝜆2‖𝛽‖22 + 𝜆1∑𝑝𝑗=1 |𝛽𝑗|” is
the combination of 𝐿1-norm and 𝐿2-norm. The 𝐿1-norm
constraint induces sparsity; namely, it can shrink those small
coefficients being exactly zero. 𝐿2-norm constraint addresses
the potential singularity and produces lower prediction error.
The Enet constraint can be seen as a mix norm, which
is like a fish net (that is why it is called elastic net) (see
Figure 1). The Enet ball is a (hyper)cube with corners on
the coordinate axes where all but one parameter is exactly
zero. It is geometrically easy to see that the loss contours
always touches the hypercube in a corner with some of
the parameters being exactly zero. So, Enet shrinks some
coefficients being exactly zero when the Enet constraint is
active.
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The important special case comes true when the ridge
parameter 𝜆2 comes to be sufficiently large. In fact, when𝜆2 󳨀→ ∞, Enet changes to be

𝛽̂𝑗(𝐸𝑛𝑒𝑡) = (󵄨󵄨󵄨󵄨󵄨y𝑇x𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜆12 )
+

sgn (y𝑇x𝑗) , 𝑗 = 1, 2, . . . , 𝑝, (4)

where (𝑧)+ and sgn(𝑧) are, respectively, defined as follows:

(𝑧)+ = {{{
𝑧, if 𝑧 > 0,
0, if 𝑧 ≤ 0.

sgn (𝑧) = {{{
1, if 𝑧 > 0,
−1, if 𝑧 ≤ 0.

(5)

Equation (4) is called univariate soft thresholding (UST) [40]
and it shows that Enet coefficients can be estimated by UST
when 𝜆2 is large enough.

Partial least square (PLS) [41–43] is a widely used statisti-
cal analytic tool that aims to reduce the dimensionality of the
high-dimensional data by constructing latent components.
PLS finds the first 𝐾 components by iteration to model
the relationship between X-matrix and y-response. Each
component (score) t is the linear combination of the original
predictors, namely, t = Xw = 𝑤1x1 + 𝑤2x2 + ⋅ ⋅ ⋅ + 𝑤𝑝x𝑝.
Generally, each weight 𝑤𝑗 of vector w obtained by PLS is
not zero; thus PLS does not automatically lead to selection
of relevant predictors. Although PLS can deal with ill-posed
problems and improve the prediction accuracy, it is still hard
when coming to model interpretability. So, sparse partial
least squares (SPLS) [18] was proposed for getting the sparse
solution. Actually, SPLS can be seen as the generalized PLS
which inserts a variable selection procedure. SPLS finds its
first sparse principal component by the following optimiza-
tion problem:

min
𝑤,𝑐

{−𝜅w𝑇Mw + (1 − 𝜅) (c − w)𝑇M (c − w) + 𝜆1 ‖c‖1 + 𝜆2 ‖c‖22} ,
(6)

𝑠.𝑡. w𝑇w = 1, (7)

where M = X𝑇yy𝑇X, w, and c are the direction vectors
and keep close to each other, 0 < 𝜅 ≤ 0.5, 𝜆1 ≥ 0, and𝜆2 ≥ 0. Equation (6) can induce the sparse property by
imposing the Enet penalty. It should be pointed out that the
penalty acts on the surrogate of the direction vector c instead
of the original direction vector w, and w and c are calculated
by an alternative iteration algorithm where solving Enet is a
crucial step. For univariate response y, ŵ = X𝑇y/‖X𝑇y‖ is the
direction vector of PLS, and ĉ𝑗 = (|ŵ𝑗| − 𝜆1/2)+ sgn(ŵ𝑗) (𝑗 =1, 2, . . . , 𝑝) for sufficiently large 𝜆2. SPLS is also an iteration
algorithm that finds first direction vector firstly, then the
second and up to figuring out 𝐾 weight vectors.

2.2. Group Variables (Wavelength Intervals) Selection of Enet
and SPLS. Considering strictly convex of Enet, suppose that𝜆2 ̸= 0 and 𝛽̂𝑖(𝐸𝑛𝑒𝑡) 𝛽̂𝑗(𝐸𝑛𝑒𝑡) > 0 in formula (3), then

󵄨󵄨󵄨󵄨󵄨𝛽̂𝑖(𝐸𝑛𝑒𝑡) − 𝛽̂𝑗(𝐸𝑛𝑒𝑡) 󵄨󵄨󵄨󵄨󵄨 ≤ (1 + 𝜆2) 󵄩󵄩󵄩󵄩y󵄩󵄩󵄩󵄩2𝜆2 √2 (1 − 𝜌𝑖𝑗), (8)

where 𝜌𝑖𝑗 = x𝑇𝑖 x𝑗 is the sample correlation coefficient of
the predictors x𝑖 and x𝑗. Equation (8) presents an upper
bound of the absolute difference of the regression coefficients
and indicates that Enet enables group variables (wavelength
intervals) selection. Namely, if two predictors are strongly
correlated (𝜌𝑖𝑗 󳨀→ 1), the corresponding regression coef-
ficients are almost identical. So those strongly correlated
predictors (wavelength intervals) will be simultaneously in or
out the model in the form of groups or intervals.

PLS is often calculated by NIPALS [44] and SIMPLS
[42] algorithms, but we just employ NIPALS to get SPLS
solution in this issue. SPLS- NIPALS can select more than
one predictor each time and the response y is deflated, so
the eigenvector X𝑇y/‖X𝑇y‖ is proportional to the current
correlation. This means that, if there is a group where the
predictors are highly correlated, then SPLS can select (or
eliminate) these group variables simultaneously.

2.3. Tuning the Parameters in Enet and SPLS. Two regu-
larization parameters (𝜆1, 𝜆2) are used in Enet. The sparse
parameter 𝜆1 can be replaced by the fraction (𝑠) of the 𝐿1-
norm as 𝑠 is limited and ranged from 0 to 1. In practice, 𝑠 can
be equally divided into 100 values and the ridge parameter 𝜆2
can set be some large numbers for the consideration of group
effect and UST.

There are totally four parameters (𝜅, 𝜆1, 𝜆2, 𝐾) in the
SPLS. A small 𝜅 (e.g., 𝜅 = 0.5) is used to avoid local
optimization in the iteration. The ridge parameter 𝜆2 should
set to be sufficiently large to obtain a UST solution which just
depends on the LASSO penalty parameter 𝜆1. Thus, just the
sparse parameter𝜆1 and the number of principal components𝐾 need to be tuned in practice. In addition, the parameter𝜆1 can be replaced by the 𝜂 if the soft thresholding direction
vector is set to be

ŵ = (|ŵ| − 𝜂 max
1≤𝑗≤𝑝

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨) sgn (ŵ) , (9)

where 0 ≤ 𝜂 ≤ 1. Compared with 𝜆1, the advantage of using𝜂 is that 𝜂 is limited into [0, 1]. Thus 𝜂 can be equally divided
into 100 intervals in practice. 𝐾 would not be too large; for
example, it could be set be 1 to 15.Thus, we make use of 100×15 = 1500 grid points to search for the optimal combination
of model parameters.

The measurement used for tuning the parameters is
mean squared prediction error of tenfold cross-validation
(𝑀𝑆𝐸𝐶𝑉), which is defined as follows:

𝑀𝑆𝐸𝐶𝑉 = 1𝑛
10∑
V=1

∑
𝑖=1

(𝑦𝑖 − 𝑦−V𝑖 )2 , (10)

where𝑦𝑖 is themeasure value of the 𝑖𝑡ℎ (𝑖 = 1, 2, . . . , 𝑛) sample
and 𝑦−𝑘𝑖 is the predicted value obtained by leaving the V𝑡ℎ fold
samples out.
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2.4. Computation and So	ware. The computation and the
related procedures are performed with R language [45]. R
is a free software environment for statistical computing and
graphics [46]. Two packages called “elasticnet” [47] and “spls”
[48] are employed respectively in computing Enet and SPLS.

3. Simulation Study

Thepurpose of this section is to give comparisons of Enet and
SPLS from several aspects when the true model is known.

3.1. Example 1: Study on the Cases of 𝑛 > 𝑝 and 𝑛 < 𝑝. In
this example, the simulation of overdetermined (𝑛 > 𝑝) and
underdetermined (𝑛 < 𝑝) data sets is used for investing the
real-world cases in spectral analysis. We simulate a sparse
model with a diverging number of observations, predictors,
and sample correlations.The simulation data is generated via
the linear model (1) and 𝜎 = √8. The 𝑛 × 𝑝 design matrix
X is drawn from a multivariate normal distribution 𝑁(0, Σ)
whose covariance matrix Σ has entries Σ𝑖𝑗 = 𝜌|𝑖−𝑗|, (𝑖, 𝑗 =1, 2, . . . , 𝑝). Choosing such covariance structure is to coinci-
dence with NIR spectroscopy data as it indicates that those
neighboring predictors are more correlated (see Figure 2).
We consider 𝜌 = 0.5, 0.7 and 0.9 and six combinations of(𝑛, 𝑝, 𝑞): (100, 25, 6), (200, 37, 12), (400, 55, 18), (100, 120,
6), (100, 300, 15), and (100, 800, 35), where 𝑛, 𝑝, and 𝑞 are
the number of samples, predictors, and nonzero coefficients,
respectively, and we suppose that the true coefficients of the
first 𝑞 predictors are 3 and the rest are 0, namely,

𝛽 = (3, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

, 0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝−𝑞

) (11)

Thus 18 combinations of different 𝑛, 𝑝, 𝑞, and 𝜌 are discussed,
where the first 9 cases are overdetermined and the last 9
cases are underdetermined. The model calibration accuracy
is measured by the relative prediction error (𝑅𝑃𝐸) defined as
follows:

𝑅𝑃𝐸 = 1𝑛𝜎2
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 , (12)

where 𝑦𝑖 is the estimate of 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑛), and the results
for comparisons are listed in Table 1. We can easily see that
SPLS outperforms Enet in terms of 𝑅𝑃𝐸 and “C” in almost
all the cases, where “C” is the number of predictors that are
correctly selected into the model, but SPLS tends to select
much more uninformative predictors (denoted by “IC” in
Table 1) than Enet. Both Enet and SPLS can select almost
all those right predictors contained in the true model and
two methods have similar performance in this situation. “C
+ IC” is the total number of the predictors that are selected
into the model, and we can see that Enet tends to select a
smaller predictor set as the key variables than SPLS. With
the increase of correlation among predictors, the number
of predictors selected into the model and the estimation
accuracy changes slightly by twomethods. In sum, Enet tends
to select less predictors as key variables than SPLS; thus it

gets more parsimony model and brings advantages for mode
interpretation; SPLS can obtain much smaller calibration
accuracy than Enet, so SPLS is more suitable when the
attention is to get better model fitting accuracy.

3.2. Example 2: Comparison of Two Methods 
at Handle
Multicollinearity. It is a good way to perform wavelength
intervals selection rather than wavelength points selection in
NIR spectroscopy analysis [25]. In this section, we simulate
a sparse model to evaluate the group variables selection of
Enet and SPLS. We firstly generate three independent latent
variables: k𝑖 ∼ 𝑁(0, 52) (𝑖 = 1, 2, 3), then let the sample size
be 𝑛 = 240 and the number of predictors be 𝑝 = 30. The
response and 30 predictors are generated as follows:

y = k1 + k2 + 𝜀, 𝜀 ∼ 𝑁 (0, I240)

x𝑗 =
{{{{{{{{{

k1 + 𝜀𝑗, if 1 ≤ 𝑗 ≤ 6,
k2 + 𝜀𝑗, if 7 ≤ 𝑗 ≤ 13,
k3 + 𝜀𝑗, if 14 ≤ 𝑗 ≤ 30,

(13)

where 𝜀𝑗 ∼ 𝑁(0, I240) (𝑗 = 1, 2, . . . , 30) are independent.
We can easily see that the predictors 1 to 6, 7 to 13, and 14
to 30 constitute of three variable group structures, and the
predictors in the same group are multicollinear. The first two
groups are associated with the response and the third group
is mixed into the model as the noise. In this simulation, 100
data sets are generated, and for each data set, the 240 samples
are divided into training, validation, and test sets by 120, 60,
and 60, respectively. Training set is for building the model,
validation set is for tuning model parameters when doing
cross-validation, and test set is for testing the performance
of the model. Both Enet and SPLS are employed to deal with
these 100 data sets, and the corresponding results are shown
in Table 2 and Figure 3. We can see that sum up, both Enet,
and SPLS have good performance when coming to dealing
with strongly correlated data in which the predictors present
group structure, this coincides with the theoretical analysis
on two methods. Table 2 shows that SPLS performs better
than Enet in term with MSE (see (14)). Figure 3 shows that
the estimate coefficients of predictors from the same group by
Enet are more consistent than that by SPLS. In addition, Enet
is more likely to eliminate the uninformative variable groups.
We can see that the predictors in the true model (from 1st to
13th predictors) are selected by the Enet and SPLS, but SPLS
also select some uninformative predictors (from 14th to 30th
predictors) and Enet almost not. So Enet is still the winner
when considering variable selection andmodel interpretation
in the case of handling multicollinearity.

4. Real Data Sets

Mean square errors (MSE) are utilized as prediction accuracy
for real data sets analysis. MSE is defined as follows:

𝑀𝑆𝐸 = 1𝑛
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 , (14)
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Table 1: Comparison of Enet and SPLS under combinations of different 𝑛, 𝑝, 𝑞 and 𝜌 based on the 100 replications. 𝑅𝑃𝐸 is the relative
prediction error, “C” and “IC” are the number of predictors that are correctly and incorrectly selected into the model, respectively.

𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9𝑛/𝑝/𝑞 Model 𝑅𝑃𝐸 C IC 𝑅𝑃𝐸 C IC 𝑅𝑃𝐸 C IC
100/25/6 Truth 6.000 0.000 6.000 0.000 6.000 0.000

Enet 0.737 5.930 0.160 0.590 5.940 0.130 0.128 6.000 1.150
SPLS 0.180 6.000 1.810 0.140 6.000 1.630 0.172 5.950 2.610

200/37/12 Truth 12.000 0.000 12.000 0.000 12.000 0.000
Enet 2.796 11.440 0.020 5.500 10.320 0.000 7.937 9.820 0.000
SPLS 0.121 11.990 1.440 0.140 11.990 1.900 0.230 11.990 6.080

400/55/18 Truth 18.000 0.000 18.000 0.000 18.000 0.000
Enet 4.516 17.290 0.030 12.770 14.780 0.000 16.153 12.920 0.000
SPLS 0.097 18.000 2.020 0.110 18.000 2.830 0.204 17.980 6.710

100/120/6 Truth 6.000 0.000 6.000 0.000 6.000 0.000
Enet 0.709 5.930 0.200 5.530 6.000 0.700 5.555 6.000 1.970
SPLS 0.124 5.990 0.480 0.190 5.990 0.760 0.246 5.970 2.990

100/300/15 Truth 15.000 0.000 15.000 0.000 15.000 0.000
Enet 5.837 13.550 2.420 10.640 12.090 0.020 8.191 12.130 0.010
SPLS 0.434 14.930 4.460 0.370 14.960 2.820 0.679 14.850 4.660

100/800/35 Truth 35.000 0.000 35.000 0.000 35.000 0.000
Enet 33.360 25.300 18.000 50.732 22.670 0.860 6511.400 32.480 0.890
SPLS 2.440 28.000 33.670 1.620 32.600 17.200 1.730 34.590 7.030

Table 2: Model selection and fitting results based on 100 replications in studying of multicollinearity. “MEAN” and “SD” denote mean and
standard deviation, respectively.

MSE C IC
Model MEAN SD MEAN SD MEAN SD
Enet 34.928 0.432 12.860 0.569 0.000 0.000
SPLS 1.343 0.012 12.730 1.016 1.610 3.315

Correlation of one predictor with others

Predictors

C
or

re
lat

io
n 

co
effi

ci
en

ts

0.
2

0.
8

0.
6

0.
4

0 5040302010

�e 28th predictor (n = 400, p = 55) 

−0
.2

0.
8

0.
6

0.
4

0.
2

0.
0

0 800600400200

�e 400th predictor (n = 100, p = 800)

Figure 2: The top subgraph is correlation coefficient path of the 28th predictor with other 54 predictors. The subgraph below is correlation
coefficient path of the 400th predictor with other 799 predictors.
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Figure 3: The left subgraphs are the coefficient paths by Enet and SPLS based on 100 replications, and the right subgraphs are the mean of
coefficients by the two methods.

where 𝑦𝑖 is the estimate of 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑛) and 𝑛 is the
sample size of the data set. In this study, each real data set is
divided into training data set and testing data set, and training
MSE (Train MSE) and testing MSE (Test MSE) are reported
based on 100 replications.

4.1. Corn Data Set. The first data set is cited from [1], which
consists of 80 samples of corn measured on three different
NIR spectrometers. The wavelength range is 1100-2498 nm at
2 nm intervals and thus it gets 700 predictors (or variables)
measured by three instruments called “m5”, “mp5”, and
“mp6” and correspondingly obtains three predictor matrices
called “m5spec”, “mp5spec”, and “mp6spec”, respectively.
The predictors of three matrices are generally strongly cor-
related (see Figure 4). Taking “m5spec” for an example,
there are 93.4% predictors whose correlation coefficients are
more than 0.92, and even 49.4% predictors whose correlation
coefficients are more than 0.99. The moisture, oil, protein,
and starch values for each of the samples are also included
as response variables and stored in the response matrix
“propvals”. In this study, we combine three predictormatrices
with four responses to compare the performance of Enet with
SPLS.

For each combination, the 80 samples are divided into
training set and testing set with the sample size 50 and
30, respectively. The training set is employed to establish
the model and the testing set is used to test the model
performance. Train MSE, Test MSE, and the number of key
predictors (Num of selected) selected into the model are
reported based on 100 replications on the data sets.The results
are shown in Table 3 and Figures 5 and 6, respectively. Table 3
and Figure 5 tell that SPLS can obtain better calibration
accuracy than Enet, but Enet can establish a more sparse
model and so it is easier to interpret the model. The above

results coincide with the results obtained from simulation
data. The testing MSE is close to the training MSE for all
the situations by both Enet and SPLS; this illustrates that
two methods are suitable for investigating NIR spectroscopy
data. Two methods obtained “consistent” results on three
predictor matrices with just slight difference, so Enet and
SPLS are not sensitive when performing data with noise.
In addition, SPLS obtains smaller fitting accuracy but Enet
selects much less predictors as key variables. So Enet is
more suitable when focusing on model interpretability, and
SPLS should be employed when the attention is model
calibration accuracy. Figure 6 tells us that the coefficients
paths obtained by two methods are segmentally zero-valued
or nonzero-valued. This means that successive wavelength
intervals are selected into or eliminated out of the model.
Both Enet and SPLS exhibit group effect when performing
the NIR spectroscopy data in which the predictors from the
neighboring wavelength interval are strongly correlated and
can be seen as a group. However, Enet has less variable groups
than SPLS, so the group effect is more outstanding by Enet
than by SPLS when performing the NIR spectroscopy data.

4.2. Gasoline Data Set. The second data set, cited from
[49], is another NIR spectral data set with NIR spectra and
octane numbers of 60 gasoline samples. The NIR spectra
were measured using diffuse reflectance as log(1/R) from
900 nm to 1700 nm in 2 nm intervals, giving 401 wavelengths
(predictors) (see Figure 7). 60 samples are also divided into
training set and testing set with the sample sizes 38 and
22, respectively. Same as the corn data set, three indices are
reported inTable 4 based on 100 replications.Obviously, SPLS
has much better estimation accuracy and Enet selects much
less predictors as key variables. Figure 8 shows the regression
coefficient paths via 100 replications with randomly choosing
the training and testing sets, and it tells that Enet just almost
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Table 3: The results on “corn” data set based on 100 replications.

Method X y Train MSECV(SD) Test MSE(SD) Num of selected
Enet m5spec moisture 0.083(0.010) 0.082(0.019) 95.120(22.881)

oil 0.028(0.004) 0.031(0.008) 68.420(24.923)
protein 0.213(0.024) 0.239(0.043) 75.870(24.947)
starch 0.645(0.061) 0.703(0.131) 43.120(29.281)

SPLS m5spec moisture 0.000(0.000) 0.000(0.000) 316.010(31.807)
oil 0.002(0.000) 0.005(0.001) 561.370(100.538)

protein 0.007(0.001) 0.020(0.006) 612.560(76.857)
starch 0.027(0.005) 0.076(0.024) 657.480(51.408)

Enet mp5spec moisture 0.080(0.010) 0.088(0.016) 92.720(19.693)
oil 0.027(0.003) 0.030(0.006) 81.820(21.233)

protein 0.213(0.022) 0.227(0.040) 98.230(17.267)
starch 0.644(0.070) 0.678(0.140) 23.830(20.286)

SPLS mp5spec moisture 0.008(0.001) 0.021(0.047) 477.020(47.843)
oil 0.005(0.001) 0.010(0.003) 675.730(38.556)

protein 0.010(0.002) 0.025(0.008) 530.010(63.240)
starch 0.060(0.010) 0.151(0.052) 637.700(45.997)

Enet mp6spec moisture 0.080(0.011) 0.088(0.020) 99.180(24.223)
oil 0.027(0.003) 0.031(0.006) 78.620(19.547)

protein 0.207(0.021) 0.241(0.038) 82.990(29.517)
starch 0.650(0.070) 0.698(0.117) 44.720(30.092)

SPLS mp6spec moisture 0.010(0.002) 0.025(0.007) 497.520(50.199)
oil 0.005(0.001) 0.010(0.003) 338.410(73.079)

protein 0.010(0.002) 0.024(0.008) 264.360(56.396)
starch 0.058(0.010) 0.140(0.041) 525.090(101.531)
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Figure 4: The intensity of each wavelength under three predictor matrices called “m5spec”, “mp5spec”, and “mp6spec” from corn data set.
Most of predictors are highly correlated.

Table 4:The results on “gasoline” data set based on 100 replications.

Train MSE(SD) Test MSE(SD) Num of selected(SD)
Enet 0.741(0.113) 0.869(0.487) 12.590(1.710)
SPLS 0.026(0.009) 0.060(0.021) 167.650(86.003)

selects one wavelength intervals, but SPLS is not obvious
in selecting wavelength intervals, so Enet exhibits much

stronger group effect and gets more sparse model than SPLS
on gasoline data set.

4.3. Buckwheat Data Set. The above corn and gasoline
are two public NIR spectroscopy data sets, and the third
NIR spectroscopy data set, called “bwX”, is from our lab,
which consists of 40 observations of buckwheat measured by
FieldSpec 3 spectrometer. The NIR spectroscopy wavelength
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Figure 5: The comparison of Enet and SPLS on corn data set. Three measures “trainMSE”, “testMSE”, and “Num of selected” are scaled to
unit one.The results of Enet and SPLS aremarked by the numbers “1” and “2”, respectively.The results of three predictormatrices of “m5spec”,
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range is 780-2500 nm at 2 nm intervals; thus it contains 861
predictors. The NIR spectra were measured using diffuse
reflectance as log(1/R) (see Figure 9). Starch in buckwheat
is measured as the response in this study (called “bwy”). The
starch is the vital nutrient in buckwheat and the fast detection
of starch is very important in practice. 40 samples are also
divided into training set and testing set with the sample sizes
30 and 10, respectively. 100 replications are performed on the
buckwheat data sets and the results are reported in Table 5
and Figure 10. Similar to the results from gasoline data set,
Table 5 and Figure 10 still show that SPLS obtains much
low prediction error and Enet is more likely to select less
wavelength intervals or predictors as important variables.

5. Conclusion and Discussion

Enet and SPLS are two popular model calibration and
selection methods for dealing with NIR spectroscopy data.

Table 5: The results on “buckwheat” data set based on 100 replica-
tions.

Train MSECV(SD) Test MSE(SD) Num of selected(SD)
Enet 12.743(1.429) 15.359(4.862) 48.500(17.020)
SPLS 2.696(1.576) 10.354(5.492) 658.580(142.789)

The number of predictors of NIR data is much larger than
sample size and the neighboring predictors are continuous,
multicollinear wavelength intervals. The two methods can
not only select more predictors than sample size but also
exhibit group effect. In other words, Enet and SPLS can
automatically group the multicollinear predictors and select
or eliminate the entire predictor group simultaneously from
the model for the “large p and small n” data. So the two
methods are very suitable for investigating NIR spectroscopy
data. The purpose of this article is to try to give advice on
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Figure 7: The intensity of each wavelength (predictors) from gasoline data set.

which method should be used when dealing with NIR data
in practice. The results from both simulation and real spec-
troscopy data show that Enet tends to select less predictors
as key variables than SPLS; thus it gets more parsimony and
sparse model and brings advantages for mode interpretation.

SPLS can obtain much smaller model calibration accuracy
than Enet. So SPLS is more suitable when the attention is
to get better fitting accuracy. What is more important, the
above conclusion is still held when coming to performing
the strongly correlated data whose predictors present group
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Figure 8: Coefficients paths of gasoline by replicating 100 times. The left subgraphs are the coefficient paths by Enet and SPLS based on 100
replications, and the right subgraphs are the mean of coefficients by the two methods.
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Figure 9: The intensity of each wavelength (predictors) from buckwheat data set.

structures. In addition, two methods can obtain “consistent”
results when the predictor matrices present slight differ-
ences, so they are not sensitive when performing data with
noises.

As mentioned above, SPLS tends to select a large number
of predictors when performing the high-dimensional NIR
spectroscopy data. Although the reference of SPLS [18] states
that (6) is proposed to obtain a sufficiently sparse solution, it
is not so sparse in practice, especially compared with Enet. In
this situation, one can also use two or more steps to further
shrink the size of predictors. In other words, one can firstly
employ SPLS to roughly select the predictors and then use
other sparsemethods such as Enet to refine the rest candidate
predictors.

Data Availability

Three real data sets used in the following section as well
as corresponding instructions are available in the electronic
supplementary material (available here). The corn [1] as well

as gasoline [49] data sets is two public spectroscopy data sets,
and the buckwheat data set is from our lab and can be used
freely.
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