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The evaluation of the ground movement induced by tunnelling is of vital

importance for the tunnel construction and the safety of the adjacent

facilities. As the spatial variability of soil was widely acknowledged, more and

more researches take insight into the uncertainty analysis for tunnelling.

However, reliability analysis considering the spatial variability of soil is still a

tough task since the accurate failure probability generally needs time-

consuming calculation of random finite element/difference. Instead of

conducting the direct Monte-Carlo simulation, this study utilizes a simplified

framework to analyze the reliability of the ground movement of tunnelling. The

main concept of this framework is adopting random variable model with

equivalent parameters by producing the comparable failure probability as

the results of random field model. Coupling with the variance reduction

technique, the reliability analysis of tunnel ground movement considering

more than one spatial variable can be addressed. Two tunnel cases are

studied to explain the adaptability and accuracy of this simplified framework

in tunnelling. The characteristic of the spatially variable soil is thoroughly

comprehended through various parametric study, based on the robustness

of the simplified framework. Results show that the simplified framework

precisely predicts the tunnel reliability considering spatially variability of soil

in a relatively efficient manner.
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Introduction

Ground movement due to tunnelling is of great importance when assessing the risk of

tunnel construction and adjacent existing structures, especially in urban areas. As a result,

plenty of researches pay attention to this topic during past decades (Peck, 1969;

Loganathan and Poulos, 1998; Zhang et al., 2011; Cui et al., 2021a; Cui et al., 2021b;

Dong et al., 2022). When the soil assumed isotropic and homogeneous, these studies can
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be defined as deterministic analysis. These deterministic analyses

give engineers plenty of experiences and convenient ways to

evaluate the risk brought by tunnelling. However, soil shows

strongly spatial variability due to the complex natural formation

process and the artificial disturbance. As a major sources of

uncertainty in geotechnical applications, the necessity of

considering spatial variability (Phoon and Kulhawy, 1999;

Dasaka and Zhang, 2012; Javankhoshdel et al., 2017) has been

demonstrated in recent decades. Cami et al. (2020; 2021)

provided a database table of horizontal and vertical scale of

fluctuation values in different locations and for different

materials, collected from published case studies, showing the

spatial variability of soil from different areas. In addition, more

typical value reflecting the spatial variability of soil can be

referred to Stuedlein (2021). To further cope with the

uncertainty, two different approaches are introduced.

The first is random variable method. In this method, the soil

properties are assumed perfectly correlated, and each of them

modeled through a single random variable. Due to the concise

concept and simplicity, the random variable method has been

widely used in estimating the face stability and ground

movement of tunnelling (Mollon et al., 2012, 2013; Eshraghi

and Zare, 2015; Miro et al., 2015). Based on kinematic theorem of

limit analysis, the reliability of the tunnel face stability can be

quickly displayed. By contrast, as the ground movement of

tunnelling is a highly nonlinear problem controlled by

multiple influencing parameters, most of the relevant

researches (Lee et al., 1990; Migliazza et al., 2009; Chakeri

et al., 2013) are conducted based on finite/finite difference

method. However, the random variable method cannot

actually reflect the soil spatial variability. To reproduce the

spatial correlation of the soil property, another method is

developed named random field method. According to the

random field theory, researchers investigate a variety of

geotechnical issues such as the bearing capacity of footings

(Griffiths et al., 2006; Tabarroki et al., 2022a, 2022b), the

stability of the slopes (Li et al., 2015; Huang and Leung,

2021), the basal-heave failure in braced excavation (Luo et al.,

2012), the face stability of tunnels (Pan and Dias, 2017; Cheng

et al., 2019a) and the ground movement induced by tunnelling

(Cheng et al., 2019b).

Since the random variable method is lack of accounting for

the spatial correlation, the random variable method is reported

estimating the unrealistic estimation of reliability (Griffiths and

Fenton, 2004; Griffiths et al., 2009; Wang et al., 2010). In general,

deformation or even failure of soil in tunnelling will develop

along the weak surface, which is similar to the slip surface in slope

stability problem. The characteristics of soil parameters are

weaker along the most critical path and thus the stress and

displacement will pass through this critical path. For example, the

mean and standard deviation of su (undrain shear strength) along

the slip surface of slope are smaller than those of the whole field

(Ching et al., 2014). However, this difference does not exist in

random variable method. Owing to the perfect correlation

assumption, the random variable method tends to result in a

fixed deformation pattern, and thus cannot seek out the most

critical path through the soil. This leads to unrealistic results

when using the random variable method.

The random finite element/difference method (RFEM/

RFDM) is generally utilized to solve out a complex

geotechnical problem considering the spatial variability of soil.

It combines the random field theory and finite element/difference

method in the framework of Monte Carlo simulation (MCS).

However, this method commonly requires for high cost and

time-consuming calculation, especially when the probability of

failure (Pf) is small. Cheng et al. (2019b) take relatively few

simulations (i.e., 500 MCS) to represent the whole MCS to

investigate the influence of spatial variability of soil on ground

movement of tunnelling. Valuable conclusions have been drawn

in his research such as the regulation of distribution and

magnitude of ground movement in spatial variable soil.

Nevertheless, as for the Pf, the analysis in this research may

not be suitable for low probability problem, because of the

inadequate times of MCS and the unrealistic values for

correlation length. In his research, the Pf varies apparently

with the correlation length in relatively large value

(i.e., ≥60 m), but seldomly changes when the correlation

length varies from 1 to 12 m. Nevertheless, the values

(i.e., θx = θy ≥ 60 m) are out of the typical statistics for a wide

range of spatially variable soils investigated by Phoon and

Kulhawy (1999). Obviously, the conclusion for Pf according to

Cheng et al. (2019b) has limitations when applied in practice. To

overcome this problem, exploring efficient reliability analysis

approaches becomes a trend in geotechnical reliability analysis

(Wang et al., 2010; Jiang et al., 2014; Jiang et al., 2015; Li et al.,

2016). To at least the author’s knowledge, these efficient methods

are widely used in analyzing the slope stability or tunnel face

stability problem, but few researches report these methods in

reliability analysis of the ground movement induced by

tunnelling.

Aiming at obtaining an accurate Pf for ground movement of

tunnelling in spatial variable soil, this study presents a more

reasonable and efficient reliability analysis through equivalent

parameters. This efficient reliability analysis takes advantage of

the simplified framework (Liu et al., 2018) which is first proposed

to solving the slope stability problem. Based on the random field

model, the regression method and MCS, this simplified

framework will be introduced in detail in the following text.

Through this simplified framework, the statistics of the

equivalent parameters can be obtained. Using the regression

method, the explicit response surface function of the random

variable model is built. By inputting the statistics of equivalent

parameters in the explicit response surface function of the

random variable model, the cost for reliability analysis

considering spatial variability is trimmed down. Reliability

analysis is conducted on both a single spatial variable case
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and a multiple spatial variables case. The results verify the

practical applicability of the simplified framework using

equivalent parameters.

Development of the simplified
framework

The simplified framework for reliability analysis using the

equivalent parameters is firstly introduced by Li et al. (2017) and

further extended by Liu et al. (2018). The main idea of this

simplified framework is to find the equivalent parameters for the

random variable model (RVM) based on the requirement that

can provide comparable Pf value with the random field model

(RFM). The corresponding RFM can reflect the spatial variability

of the soil. Through the equivalence between the RFM and the

RVM, the reliability approaches used in random variable method

such as first-order reliability method and response surface

method can be applied, and thus improves the computation

efficiency of the reliability analysis considering spatial variability

of the soil.

To be specific, in slope stability analysis, the equivalent

parameters are defined as the parameters that enable the

safety factor of RVM equals to that of RFM. In this study, for

the ground movement of tunnelling, the equivalent parameters

are defined as the parameters those enable the maximum of the

ground settlement (Smax) of RVM and RFM to be the same. As

the deformation pattern may be different in the RVM and RFM,

these two models are not fully equivalent. However, the

equivalence between RVM and RFM here is reasonably

acceptable because this study focuses on the failure probability

that only depends on the values of Smax, rather than the risk

assessment affected by the deformation pattern. The included

techniques in the framework will be introduced in detail in the

following sections.

Establish the RFM

Several random field generation methods can be utilized,

such as the midpoint method (Kiureghian and Ke, 1988), the

local average subdivision (LAS) method (Vanmarcke, 2010), the

shape function method (Liu et al., 1986)and the Karhunen–Loève

(KL) expansion (Phoon et al., 2002). Due to the efficiency and

accuracy of the KL expansion, it is adopted in this study. The KL

expansion is introduced briefly in the following.

A random field H (A,θ) is a collection of random variables

associated with a continuous indexA ∈ Ω, whereΩ is an open set

of Rn describing the system geometry and θ ∈ Θ is the coordinate

in the outcome space. When discretizing a random field H (A,θ)

using the KL expansion, the spectral decomposition of its

autocorrelation function ρ (A1, A2) is conducted. The

autocorrelation function is bounded, symmetric and positive

definite. Hence, the discretization of a random field is defined

by the eigenvalue problem of the homogenous Fredholm integral

equation as:

∫
Ω

ρ(A1, A2)fi(A2) � λifi(A1) (1)

where A1 and A2 represent the coordinates of two points in Ω;
ρ(A1, A2) is value of the correlation function; λi and fi (·) are the
eigenvalues and eigenfunctions corresponding to ρ(A1,A2). For a

two-dimensional (2-D) tunnel domain, A1, A2 can be denoted as

(x1, y1) and (x2, y2). In this study, the Gaussian correlation

function is chosen for representing the spatial variability of

soil and is written as:

ρ(τx, τy) � exp{ − π[(τx
θx
)2

+ (τy
θy
)2]}, (2)

Where τx=|x1-x2|, τy=|y1-y2| are the absolute distances between

two points in the horizontal and vertical directions, respectively;

and θx and θy are the horizontal and vertical correlation length,

respectively. The detailed solution for the eigenvalue problem can

be referred to Phoon et al. (2002). The series expansion of a 2-D

random field H (x, y, θ) is expressed as:

H(x, y, θ) � μ +∑∞
i�1
σ

��
λi

√
fi(x, y)ξ i(θ)(x, y ∈ Ω), (3)

where ξi(θ) is a set of orthogonal random coefficients

(uncorrelated random variables with zero mean and unit

variance); (x, y) represents the coordinate in the random field;

μ and σ denote the mean and standard deviation of the random

field. The approximate random field is defined by truncating the

ordered series given in Eq. 3.

~H(x, y, θ) � μ +∑M
i�1
σ

��
λi

√
fi(x, y)ξ i(θ)(x, y ∈ Ω) (4)

The value ofM to be chosen strongly depends on the desired

accuracy and the autocorrelation function of the random field.

Evaluation of the equivalent parameters

The basic precondition for obtaining the equivalent

parameters is that RVM with the equivalent parameters

produces a comparable failure probability as that calculated

using the RFM with the original spatially variable parameters.

In this study, the RVM is based on a numerical model which will

be introduced in detail in Example I: A tunnel considering single

spatially variable parameter and Example II: A tunnel considering

multiple spatially variable parameters (seeing Figures 2, 10).

Furthermore, the numerical model for the RVM is consistent

with the RFM. Based on the establishment of the RFM and RVM,

the equivalent parameters can be deduced by back-calculation

from the RVM for a given Smax value collected from the existing
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RFM. According to Li et al. (2017), the evaluation of the

equivalent parameters is achieved by trial-and-error method.

This means that, when reproducing a result of the RFM, more

than one times of RVMmay be realized. This is time-consuming.

Moreover, it is only applicable when a single spatial variable

parameter is considered. To improve the efficiency, the

evaluation of the equivalent parameters is incorporated with

the explicit response surface function of the RVM (denoted

ERVM hereafter) proposed by Liu et al. (2018).

The ERVM uses the explicit equations to substitute the

original RVM. Without the process of trial-and-error, the

ERVM can output the results quickly through algebraic

operation. The establishment of the ERVM is introduced

below. The ERVM is established based on the regression

analysis of dataset (X, Smax) obtained from a variety of

deterministic analysis, where X is a matrix with a dimension

of Nt × n, and n is the number of the spatial variable soil

parameters which are considered. Specifically, n =1 means

only one spatial variable soil parameter is analyzed, and

n =2 means two spatial variable soil parameters are analyzed.

For a given Smax value obtained in advance from the RFM, the

equivalent parameters can be easily obtained through the ERVM.

Then the statistics such as means, standard deviation and

probability density function can be determined.

The back-calculation will be successfully conducted when

n =1. However, when n>1, the solution will be nonunique. To

cope with this problem, the following strategy is used in this

study:

1) Determine a soil parameter to be back-calculated for a

given Smax.

2) Perform the variance reduction technique on the remaining

n−1 soil parameters.

3) Randomly generate n−1 random variable samples according

to the statistics obtained in Step (2) and substitute the sample

values into the ERVM together with the given Smax to back-

calculate the equivalent value of the soil parameter that is pre-

specified in Step (1). It means that only one type of equivalent

parameter is required to be back-calculated for a given

equivalent Smax.

Process of the simplified framework

To further facilitate the understanding and application of the

simplified framework, Figure 1 schematically shows the

flowchart of the proposed reliability analysis process. In

general, the flowchart mainly consists of five steps, which are

shown as follows:

1) Collect the required data of geotechnical and geometrical

parameters for reliability analysis of tunnel ground

movement, including but not limited to shear strength,

unit weight, tunnel diameter and tunnel axis depth. Then,

select the stochastic parameters and characterize their

statistics, including the means, coefficients of the variation

(COVs), probability density functions (PDFs), auto

correlation functions (ACFs), and correlation length (θ).

2) Establish RVM with the known information of the

geotechnical and geometrical parameters obtained in Step

(1). Perform Nt realizations of RVM and obtain the

relationship between Smax and X by regression analysis.

Develop the ERVM, i.e., Smax = f(X).
3) Generate the random field based on KL expansion and

establish RFM with the known information of the

geotechnical and geometrical parameters obtained in Step

(1). Perform Ns realizations of RFM to form the samples to

obtain the equivalent parameters.

4) The samples for Smax obtained in Step (3) are then substituted

into ERVM in Step (2) for back-calculating the equivalent

parameters values (i.e., X = f−1(Smax)). A statistical analysis is

FIGURE 1
Flowchart for the simplified framework for reliability analysis.
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then conducted to obtain the means, COVs and PDFs of the

equivalent parameters. When more than one soil parameters

are assumed spatially correlated, the strategy including the

variance reduction technique introduced in Evaluation of the

equivalent parameters should be used.

5) Conduct the reliability analysis based on MCS (or other

reliability approaches used in random variable method) in

ERVM with the statistics of the equivalent parameters

obtained in Step (4).

Example I: A tunnel considering single
spatially variable parameter

Establish the RVM and RFM

The simplified framework is first applied to a tunnel of which

the stochastic ground movement is only controlled by the

young’s modulus E. Owing to symmetry, half of the tunnel

domain is considered in this study. Figure 2 shows the typical

mesh and model domain of the numerical model. The numerical

model is modeled by 1754 element zones and 2,784 grid points.

To maintain the calculation efficiency, the mesh is finer around

the tunnel and becomes sparse away from the tunnel. As shown

in this figure, the tunnel crown depth is 12 m and the tunnel

diameter is 6 m. The constitutive model of the soil is Mohr-

Coulomb model. The unit weight of the soil γ is 18 kN/m3. The

friction angle φ and the cohesion c of the soil is 8.5° and 13 kPa

respectively. The Poisson’s ratio of the soil is 0.3. To cope with the

spatial variability of E, the random field is generated by KL

expansion as introduced in Establish the RFM. E is assumed to be

subjected to the lognormal stationary random field with a mean

μE of 12 MPa. The coefficient of variation COVE is 0.3. Both the

horizontal and vertical correlation length θx and θy are 60 m. The

stress release method is adopted and the stress release ratio is set

0.1 in both RVM and RFM. The constitutive model of the lining

segments is elastic model. The unit weight of the lining segments

is 24 kN/m3. The thickness of the lining segments is 0.3 m. The

Poisson’s ratio of the lining segments is 0.2. The young’s modulus

of the lining segments is 15 GPa. It should be noted that this

numerical model as well as the value of the relevant parameters

are basically obtained according to Cheng et al. (2019b), therefore

the results can be compared with Cheng et al. (2019b) for

verification of the simplified framework.

Figure 3 shows a certain realization of RVM which

provides an Smax of 15 mm when inputting E as a spatial

constant with a value of μE. The ground settlement profile is

highly consistent with the result reported by Cheng et al.

(2019b). This indicates the accuracy of the numerical model,

thereby ensuring its applicability of the subsequent analysis.

This numerical model is further used in establishing the

RFM. Figure 4 illustrates certain realization of RFM, in

which dark color indicates large E, whereas light color

represents small E.

Determination of the equivalent
parameters

In this section, the equivalent young’s modulus Eeq is

determined. According to the flowchart depicted in Figure 1,

the first step is to establish the ERVM for the ground movement

of tunnelling through a certain number of realizations of RVM.

FIGURE 2
Typical mesh and model domain for example I.

FIGURE 3
The verification of the numerical model.
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Thus, 15 samples of E selected from the range of (μE − 3σE, μE +

3σE) are input in the RVM for establishing the ERVM. Figure 5A

plots the results of the 15 realizations simulations of RVM. A

linear relationship between Smax and 1/E can be observed

according to the scatter points in Figure 5A. This fits the

practice because when infinite E is adopted, the deformation

of soil will tend to be 0. By conducting the linear regression

analysis, the explicit response surface function of the RVM can be

deduced as:

S max(E) � 169/E (5)

One-hundred realizations of RVM where the value of E is

randomly generated according to the PDF of it are utilized to

verify the accuracy of the ERVM. Figure 5B illustrates the

comparison between the Smax predicted by Eq. 5 and obtained

from the 100 realizations of RVM. The Smax from the RVM and

ERVM agree well with each other, indicating that the ERVM can

be effectively applied to back-calculate the equivalent parameters.

Next, following the flowchart in Figure 1, Ns realizations of

RFM should be generated for estimating the statistics of Eeq. The

Smax obtained through Ns realizations of RFM is back-calculated

in Eq. 5 to form the dataset for Eeq. By performing the statistical

FIGURE 4
Certain realization of RFM based on isotropic random field.

FIGURE 5
Dataset and verification for the ERVM.
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analysis, the mean μEeq, the standard deviation σEeq and the PDF

of the Eeq can be deduced based on the dataset of Eeq. To form the

dataset for Eeq, the realizations times Ns should be determined in

advance. The determination of the value ofNs is vital, because the

accuracy increases with Ns, whereas the computational efficiency

decreases with Ns. Therefore, a reasonable value is determined

according to a sensitivity study in which the variation of the

statistics of Eeq withNs is analyzed. Figure 6 plots the variations of

the μEeq and σEeq with Ns. As shown in both figures, the statistics

varies greatly when Ns is lower than 3,000, but this becomes

insignificantly when Ns exceeds 3,000. As a result, Ns is

determined as 3,000 in this section. Figure 7 shows the

probability histogram of the Eeq. As shown in Figure 7, the

probability histogram is well fit by the lognormal distribution and

the goodness of fit is 0.99. μEeq and σEeq of this lognormal

distribution is 11.18mm and 0.366. The reliability analysis is

processed based on these statistics incorporated with Eq. 5.

Reliability analysis

When calculating Pf corresponding to the maximum of the

ground surface settlement, the performance function is

expressed as:

G � S max − s, (6)

where s is the allowable Smax. In this study, s=20 mm. For

simplicity, several abbreviations such as MCS, EQP+MCS and

EQP+ERVM +MCS are introduced to better compare the results

from different methods. It should be noted that the EQP

represents the equivalent parameter and in this section is Eeq.

MCS denotes the direct Monte-Carlo Simulation based on the

random field model shown in Figure 4; EQP+MCS is the direct

Monte-Carlo Simulations based on the random variable model

using the equivalent parameters introduced in last section;

EQP+ERVM+MCS represents the Monte-Carlo Simulations

based on the explicit response surface function of the random

variable model using the equivalent parameters, namely the

simplified framework. To be specific, the numerical model

used in both random field model and random variable model

is the same with which has been introduced in Establish the RVM

and RFM (i.e., Figure 2). The explicit response surface function of

the random variable model can be referred to Eq. 5. In addition,

the number in the bracket represents the realization times of

MCS in each method and this number is set 10,000 in all three

methods mentioned above. The Pf estimated by the

EQP+ERVM+MCS is 0.2274. This value is consistent with the

result of the MCS which is 0.2269, showing that the simplified

framework with the statistics of Eeq can accurately reflect the

FIGURE 6
Variation of μEeq and σEeq with Ns.

FIGURE 7
The probability histogram of Eeq.
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spatial variability of the soil. Moreover, this result also matches

well with the results by the EQP+MCS (Pf = 0.2203), further

verifying the accuracy of the ERVM (i.e., Eq. 5). When compared

to Cheng et al. (2019b) (Pf = 0.2045), the EQP+ERVM+MCS

provides a larger value of Pf. However, the error between these

two methods is acceptable for two reasons. First, the Pf estimated

in Cheng et al. (2019b) is relatively rough as only 500 realizations

MCS were conducted. Second, as reported in previous study (Li

et al., 2015), the Gaussian correlation function used in this study

may result in larger estimations of the Pf than other correlation

functions.

In the previous study (Cheng et al., 2019a), the relationship

between Pf and s (the allowable Smax) was presented. These results

are also used in this study for comparison. Figure 8 compares the

Pf derived from the simplified framework, MCS (500) and Cheng

et al. (2019a). Figures 8A,B show the variation of Pf when s ranges

in 10–35mm and 35–55 mm respectively. It should be noted that,

according to Cheng et al. (2019a), Pf approaches 0 as the s exceeds

30 mm and thus the corresponding results are not to be found.

Therefore, the results of 500 times of direct MCS based on RFM

are shown instead in Figure 8. As plotted in Figure 8A, the three

methods showing good consistency with each other implying the

good performance of the proposed simplified framework.

However, Pf decreases greatly when s grows and deviations

are observed between EQP+ERVM+MCS and MCS (500)

(seeing Figure 8B). As can be seen in Figure 8B, the MCS

(500) shows big disadvantages in estimating Pf. Discontinuity

in Pf estimated by the MCS (500) is observed when s grows.

When s is in the range of 35–41 mm, 43–45 mm or 48–50 mm, Pf
stays constant. On the contrary, sharply change is observed when

s is in the range of 41–43 mm, 45–48 mm or 50–52 mm. This

greatly deviates from the practice. Even if this is a low probability

problem, the inaccurate Pf may produce great risk as the loss is

relatively large. In contrast, Pf decreases more continuously with s

when using the proposed simplified framework. As a result, MCS

(500) is only adequate for a reasonable Pf at a high probability

level whereas the proposed simplified framework shows good

performance in both high and low probability level. Overall, the

accuracy as well as the improvement of the simplified framework

has been verified.

Parametric study

The effect of the spatial variability on the reliability analysis

results is testified utilizing the simplified framework. Several

parameters are investigated such as the horizontal and vertical

correlation distances (i.e., θx and θy) and the coefficient of

variation COV. The results of the direct MCS (500, 10,000)

are also presented in this section to explain the accuracy and

improvement of the simplified framework. Different from the

isotropic random field generated in Cheng et al. (2019b), the

anisotropic random field is generated with more reasonable θx
and θy values by referring to the typical statistics for a wide range

of spatially variable soils (Phoon and Kulhawy, 1999). θx varies

from 10 to 40 m with an interval of 10m, whereas θy varies from

0.5 to 3.0 m with an interval of 0.5 m. In addition, COV ranges

from 0.1 to 0.5 with an interval of 0.1. Only one parameter is

changed in the parametric study and the remaining parameters is

equal to the basic case of which θx=20m, θy=2.0 m and COV=0.3.

Figure 9 plots the influence of COV, θx and θy on the

reliability results based on the simplified framework. It can be

seen from the Figure 9A that Pf increases sharply with COV. This

is due to the fact that a higher COV results in a more global

heterogeneous random field. In Figures 9B,C, Pf also increases

with the correlation length θx and θy. This is owing to the reason

that the larger the correlation length is, the greater the local

homogeneity of the random field is. Greater local homogeneity of

the random field enlarges the probability of the development of

weak surface which are consist of weak zones. When the relieved

FIGURE 8
Comparison between the simplified framework, MCS (500) and Cheng et al. (2019a).
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stress transferred along the weak surface, the larger ground

deformation occurs and thus leads to higher Pf. Another

reason for the higher Pf is that the larger correlation length

will make the variation of the stochastic response larger.

As COV increases from 0.1 to 0.5, Pf is in a range of 0–25%.

In comparison, the variation of the correlation length θx and θy
gives rise to narrower ranges of Pf which are 2–4% and 0–5%

respectively. This indicates that Pf affected by COV the most. For

the correlation length, as a wider range of Pf is provided in

Figure 9C, engineers should be more cautious with determining a

reasonable value for θy when conducting the reliability analysis.

In Figures 9A–C, the Pf according to MCS (10,000) and the

EQP+ERVM+MCS is almost the same. This further verifies the

practical applicability of the proposed simplified framework in a

wider range of spatial variable characteristics. However, the Pf
based on MCS (500) deviates from the former two methods,

especially when Pf is lower than 5%. As can be seen in Figure 9A,

when the COV=0.4 or 0.5, the Pf predicted by all three methods is

almost the same. However, as COV decreases to 0.2 and 0.3, the

Pf predicted by EQP+ERVM+MCS shows good consistency with

MCS (10,000) whereas the deviation between MCS (500) and

MCS (10,000) become significant. For example, when COV=0.2,

the Pf predicted by EQP+ERVM+MCS and MCS (10,000) is the

same as 0.1%, while Pf predicted byMCS (500) is 0%. It should be

noted that it is a unconservative result which ignores the risk of

great loss. This is observed in Figures 9B,C more apparently as

the Pf in these two figures are basically lower than 5%. The

variation trend of Pf with correlation length according to

EQP+ERVM+MCS and MCS (10,000) is illustrated the same

in these two figures, while the Pf based on MCS (500) varies

randomly with the correlation length. This indicates that

inadequate MCS times is not applicability when estimating the

variation trend of Pf with the spatial variable characteristics.

Example II: A tunnel considering
multiple spatially variable parameters

Establish the RVM and RFM

The simplified framework is utilized to estimate the reliability

of a tunnel of which the stochastic ground movement is

controlled by multiple spatially variable parameters. Figure 10

shows the typical mesh and model domain of the numerical

FIGURE 9
Parametric study on (A) COV, (B) θx, and (C) θy.

Frontiers in Earth Science frontiersin.org09

Yang et al. 10.3389/feart.2022.985882

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.985882


model. The numerical model is modeled by 2,316 element zones

and 3,654 grid points. The tunnel diameter is 6 m and the tunnel

crown depth is 15 m. Before the stochastic analysis, a sensitivity

analysis is carried out to determine the key parameters which

influences the Smax the most. A wide range of the influencing

parameters are chosen and the value of them are referred to soft

soil in the Code for Design of Railway Tunnel (National Rail

wayAdministration of the People’s Republic of China, 2016).

Forty-four analysis cases are conducted to investigate the key

parameters.

Figure 11 shows the sensitivity analysis results for unit weight γ,

young’smodulus E, cohesion c, Poisson’s ratio μ and friction angleφ.

In this figure, p denotes the dimensionless scale factor of Smax, which

is equal to the Smax divided by the corresponding Smax in the basic

case A (γ= 22 kN/m3, E= 23.5MPa, c= 35 kPa, μ= 0.375,φ= 17.5°).

Also, q is dimensionless scale factor of the influencing parameter,

which is equal to the influencing parameter divided by the

corresponding value in the basic case A. As shown in Figure 11,

E and φ have significant effect on Smax, while the effect of γ, c and μ

on Smax is insignificant. Therefore, E and φ are the two key

parameters that will be analyzed in the following text. Similar to

the reliability analysis considering single spatial variability

parameter, E and φ are assumed to be subjected to a lognormal

stationary anisotropic random field. COVE is 0.3. The COV of φ

(denoted as COVφ hereafter) is 0.1. For the correlation length,

θx=20 m and θy=2m are set for both E and φ. The means of E and φ

are set as 15° and 20MPa. The deterministic parameters γ, c and μ

are 20 kN/m3, 15MPa, 0.375 respectively. The stress release ratio is

still set as 0.1.

Determination of the equivalent
parameters

Before determining the equivalent parameters, the

247 realizations of RVM are performed to form the dataset

for ERVM. The dataset includes the cases with E = {2, 3, 4, 5,

6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45} MPa and φ = {5,

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29} °. Based on the dataset,

ERVM is established as:

FIGURE 10
Typical mesh and model domain for example II.

FIGURE 11
Sensitivity analysis results.

FIGURE 12
Verification of the ERVM by 100 random cases.
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Smax (E, φ) � k1/E; k1 � 329φ − 4659.6 φ< 13°

s max(E, φ)k � k2/E; k2 � −34808.15 × e−
φ
2.4 − 227.72,φ≥ 13°

(7)
To verify the ERVM, 100 realizations of RVM are conducted.

Figure 12 demonstrates the comparison between the Smax values

predicted by Eq. 7 and Smax obtained from the RVM. As shown in

Figure 12, Eq. 7 is validated to present good performance in

predicting the values of Smax.

As clarified in the flowchart in Figure 1, when more than one

soil parameters are assumed as spatial variable parameters, the

strategy including the variance reduction technique introduced

in Evaluation of the equivalent parameters should be used. For

convenience, φ is the influencing parameter to be reduced.

Namely, E is the influencing parameter to be back calculated.

To explore the value of variance reduction factor γ(φ),

48 realizations of MCS (10,000) based on RFM are performed.

It is found that the effect of COVφ and θx of φ on γ(φ) is small and

can be neglected. As a result, the value of γ(φ) can be only related

to θy and the relationship between γ(φ) and θy is shown in

Figure 13. As can be seen in Figure 13, γ(φ) decreases as θy
increases and this can be concluded as:

γ(φ) � −0.0313θy + 0.18811. (8)

Incorporated with the variance reduction factor γ(φ), the

statistics of Eeq and φeq can be drawn according to Ns realizations

of RFM. Also, as Eeq is the only parameter needs to be back-

calculated, the variation of the statistics of Eeq withNs is analyzed

to find a proper Ns. Figure 14 shows the sensitivity study results

for the variation of the statistics of Eeq with Ns. As shown in both

figures, the statistics varies greatly when Ns is lower than 2000,

but this become insignificantly when Ns exceeds 2000. Therefore,

Ns =2000 is assumed in this section.

Reliability analysis

The definition of MCS, EQP+MCS and EQP+ERVM+MCS

are the same as which has been explained in example I. When

considering the spatial variability of E and φ, the Pf of MCS,

EQP+MCS and EQP+ERVM+MCS are 0.0503, 0.055 and

0.0545 respectively. Good consistency is obtained between

three methods and it is verified that the proposed simplified

FIGURE 13
The linear relationship between γ(φ) and θy.

FIGURE 14
Variation of (A) μEeq and (B) σEeq with Ns.
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framework also performs well considering multiple spatial

variable parameters.

Parametric study

To explore the spatial variability effect of E and φ on the

reliability of the ground movement of tunnelling, the correlation

length and the coefficient of variation of these 2 parameters are

analyzed based on the simplified framework. Also, to verify the

simplified framework in a wider range of spatial variable

characteristics, the results of MCS (10,000) as well as the

EQP+MCS (10,000) are also presented. In the parametric

study, θx varies from 10 to 60 m with an interval of 10 m

whereas θy varies from 1.0 to 6.0 m with an interval of 1.0 m.

In addition, COVE ranges from 0.1 to 0.5 with an interval of

0.1 while COVφ ranges from 0.05 to 0.2 with an interval of 0.05.

Only one parameter is changed in the parametric study and the

value of the remaining parameters equals to the basic case of

which θx=20m, θy=2.0m, COVE =0.3 and COVφ=0.1.

Figure 15 demonstrates the influence of COVE, COVφ, θx and

θy on the reliability results based on the simplified framework. It

can be seen from the Figures 15A,B that Pf increases sharply with

COVE and COVφ. However, Pf is more sensitive to the COVφ than

COVE. This is reasonable since the φ controls the plastic

deformation of soil. Moreover, the Pf evaluated by the proposed

simplified framework agrees well with the EQP+MCS (10,000) and

MCS (10,000). In particular, the proposed simplified framework

predicts accurate Pf at low probability levels such as COVE =0.1 or

COVφ = 0.05. When COVE =0.1, Pf estimated by the proposed

simplified framework is 0.00265, which is comparable to the Pf
based on MCS (10,000) with a value of 0.002. Also, when COVφ =

0.05, Pf estimated by the proposed simplified framework is

0.01754, which is comparable to the Pf based on MCS (10,000)

with a value of 0.02. As shown in Figures 15C,D, Pf increases with

θy nonlinearly, whereas seldomly changes when θx varies. Overall,

the proposed simplified framework shows practical applicability in

predicting the reliability considering multiple parameters in a wide

range of spatial variable characteristics.

Conclusion

This study presents a more reasonable and efficient reliability

analysis for ground movement of tunnelling in spatial variable

soil by incorporating with the equivalent parameters. The

proposed simplified framework utilized in this study refers to

Liu et al. (2018) which is firstly introduced in slope stability

FIGURE 15
Parametric study on (A) COVE, (B) COVφ, (C) θx, and (D) θy.
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analysis. The theoretical basis and the detailed process are

explained thoroughly in this study. Reliability analysis is

conducted on both tunnels considering single and multiple

spatial variable parameters. By comparing to the former study

(Cheng et al., 2019b) and direct MCS on RFM, the proposed

simplified framework is verified to show good performance in

evaluating the Pf of ground movement of tunnelling. Parametric

study is carried out to figure out the effect of various parameters

related to spatial variability on the Pf. The conclusions in this

study are drawn as:

1) The proposed simplified framework can effectively address

the reliability analysis for ground movement of tunnelling in

spatially variable soils. Compared to the previous study, the Pf
of ground movement of tunnelling is more accurate and

reliable. Its accuracy is maintained for an anisotropic

random field with wider range of the correlation lengths

and COV of various parameters. This indicates that the

proposed simplified framework is a applicable tool in

estimating the Pf of ground movement of tunnelling.

2) The young’s modulus E of the soil is assumed as a spatial

variable parameter in tunnel first. When considering the

spatial variability of E, Pf increases sharply with the COV

of E. Pf also increases with the correlation length. However, Pf
is sensitive to the COV of E most. Compared to θx, θy
influences the Pf more significantly.

3) According to the results of the 44 sensitivity analysis cases, the

young’s modulus E and the friction angle φ are assumed as the

spatial variable parameters in a tunnel considering multiple

spatial variable parameters. In comparison, the unit weight γ,

the cohesion c and the Poisson ratio μ show limited impact on

the groundmovement and their spatial variability is neglected in

the tunnel case considering multiple spatial variable parameters.

4) Before conducting the reliability analysis considering the

spatial variability of E and φ, the reduction factor γ(φ) is

discussed based on 48 realizations of MCS (10,000). As a

result, the value of γ(φ) can be only related linearly to the

vertical correlation length θy but is uncorrelated with

the horizontal correlation length θx. The linear

relationship between γ(φ) and θy can be expressed as Eq. 8.

5) Parametric study of the reliability analysis considering the

spatial variability of E and φ indicates that the COVφ produce

greater effect on Pf than the COVE. Differing from the

reliability analysis considering the effect of single spatial

variable, Pf increases nonlinear with θy but stays almost

constant with θx.
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