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ABSTRACT 
 
The efficiency of isolates from entomopathogenic fungus Beauveria bassiana, Lecanicillium 
muscarium and Metarhizium rileyi in the control of eggs and third-instar nymphs of whitefly, Bemisia 
tabaci biotype B, was evaluated by pathogenicity and virulence tests, under laboratory conditions. 
For the pathogenicity tests, five leaflets of bean (Phaseolus vulgaris) plants containing 20 nymphs or 
20 eggs of B. tabaci biotype B were used. The leaflets were immersed in suspension containing a 
concentration of 108 conidia/ml of each fungus isolate. Nymph mortality and egg viability were 

Original Research Article 



 
 
 
 

Espinosa et al.; JEAI, 38(6): 1-8, 2019; Article no.JEAI.49543 
 
 

 
2 
 

evaluated after seven days. The isolates that caused nymph mortality and egg viability above 80% 
were submitted to virulence tests, in order to estimate the lethal concentration (LC50) of each isolate. 
All isolates were pathogenic to eggs and third-instar nymphs of B. tabaci Biotype B. JAB07 of B. 
bassiana and LCMAP3790 of L. muscarium isolates presented the best results, with nymphs 
mortality of 96.68 ± 2.25% and 97.74 ± 1.56%, respectively. Additionally, JAB07 was the most 
virulent isolate, both for eggs and third-instar nymphs, with LC50 estimated of 0.012 and 0.006 × 103 
conidia/ml, respectively. We suggest, future field trials are required in order to analyze the real 
efficiency of this isolate in the control of eggs and nymphs of B. tabaci biotype B in field conditions. 
 

 
Keywords: Microbial control; pathogenicity; virulence; Beauveria bassiana; JAB07. 
 

1. INTRODUCTION  
 
The whitefly, Bemisia tabaci (Genn.) (Hemiptera: 
Aleyrodidae), is one of the most important 
agricultural pests worldwide. The species has 
more than 600 host plant species, such as 
soybean, bean, cotton, tomato, among others [1, 
2]. B. tabaci biotype B is the most important 
strain of B. tabaci, due to its high amount of host 
plants, high biotic potential and virus 
transmission capacity [3,4]. B. tabaci biotype B is 
distributed throughout Brazil causing economic 
losses estimated at 2 billion dollars in large-scale 
crops annually [5]. The duration of the cycle life 
can varies according to the species, with 
temperature being one of the most determinant 
factors. B. tabaci life cycle lasts approximately 19 
days at 32 °C, and can reach 73 days at 15°C. 
Under favorable conditions, this pest can reach 
11 up to 15 generations per year and each 
female being able to oviposit up to 300 eggs 
during its life cycle [6]. The immature and adult 
phases cause direct damage to the plant, by 
suctioning. Furthermore, this pest causes an 
indirect damage, due to the transmission of more 
than 100 species of plant viruses [3,4,7]. 
 
The control of B. tabaci biotype B is performed 
primarily with chemical insecticides, which has 
increased the selection of resistant populations 
of this pest worldwide, as well as problems 
related to human health and environmental 
contamination [8]. Thus, integrated programs 
management using alternative control that do not 
cause risks to natural enemies, are harmless to 
humans and environmentally friendly are of great 
importance. 

 
The biological control of whitefly using 
entomopathogenic fungi has increased 
worldwide [9]. These fungi have the unique ability 
to infect their hosts directly through the 
integument and have important role in the pest 
population regulation in the field. The 
entomopathogenic fungi that have potential for 

whitefly control include Isaria fumosorea, Wize 
(1904), Beauveria bassiana (Bals.-Criv.) Vuill. 
(1912), Metarhizium anisopliae (Metchnikoff) 
Sorokin (1883), Lecanicillium spp. and 
Aschersonia spp. [10,11]. 
 
Indeed, isolates from B. bassiana and 
Lecanicilium muscarium has been used  for 
control to whitefly with formulated sprays. 
Although, previously studies have reported low 
control efficiency of this pest [12,13,14]. In 
relation to Metarhizium rileyi (Farlow), this fungi 
species possessed high toxicity against 
lepidopterans larvae and their potential has been 
explored against this insect group [15]. However, 
for our knowledge, the activity of the M. rileyi 
against sucking pest, as whitefly is unknown. 
Searching for highly virulent fungi isolates is 
essential for the success of strategies for the 
whitefly control, as well as the evaluation of 
different isolates of entomopathogenic fungi that 
are used for the control of other pest species. 
Thus, the objective of this work was to evaluate, 
in laboratory conditions, the efficiency of B. 
bassiana, L. muscarium and a new isolate from 
M. rileyi for the control of eggs and nymphs of B. 
tabaci biotype B. 
 

2. MATERIALS AND METHODS  
 
2.1 B. tabaci biotype B Population 
 
The population of B. tabaci biotype B was 
obtained in cabbage plants (Brassica oleracea L. 
var. Acephala) in experimental field of the São 
Paulo State University, School of Agricultural and 
Veterinarian Sciences (UNESP-FCAV), 
Jaboticabal, São Paulo, Brazil. Species 
identification was performed in the Department of 
Entomology of the Agronomic Institute of 
Campinas (IAC), Campinas, São Paulo, Brazil, 
and was identified as biotype B, based on the 
genetic characterization [16]. Insects were reared 
in acclimatized room (25 ± 2°C, 70 ± 10% RH 
and 12/12 h of photophase) in bean plants 
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(Phaseolus vulgaris L. cv. Pearl). Once these 
plants reached vegetative stage V3 (three 
leaves), they were infested with 60 adults of B. 
tabaci Biotype B in cages (50 cm x 50 cm x 80 
cm) for 24 hours to ensure oviposition and 
reduce the variability caused by the presence of 
different stages individuals. After 24 h, the adults 
were transferred and 7 days were waited to 
guarantee the egg stage and 15 days to 
guarantee the 3-instar stage. In this way, a 
biological cycle of the whitefly of 30 days is 
maintained and guarantees the next      
generation of the insect used during the study 
[17]. 
 

2.2 Entomopathogenic Fungi Isolates  
 
The isolates of B. bassiana (IBCB18, IBCB35, 
IBCB66 and JAB07), L. muscarium 
(LCMAP3790) and M. rileyi (NOM1950) were 
obtained from the entomopathogen bank of the 
Laboratory of Microbial Control of Arthropods 
Pests (LCMAP), of the São Paulo State 
University, School of Agricultural and 
Veterinarian Sciences (UNESP-FCAV), 
Jaboticabal, Sao Paulo, Brazil. Isolates from L. 
muscarium and M. rileyi were maintained in Petri 
dishes, containing culture medium Sabouraud 
Dextrose Agar with Yeast Extract (SDAY). The 
isolates of B. bassiana were maintained in 
Sabouraud Dextrose Agar (SDA) culture 
medium, incubated in a BOD at 28 ± 1°C, 70 ± 
10% RH and 12/12h of photophase for eight 
days. Subsequently, a suspension (10 ml of 
distillated water + 0.05 of Tween® and 
entomopathogenic fungus) was mixed, and two 
serial dilutions were performed to quantify the 
number of conidia/ml in Neubauer chamber, and 
standardization at the concentration of 10

8
 

conidia/ml. 
 
2.3 Pathogenicity Bioassays with B. 

tabaci Nymphs 
 
The bean plants (P. vulgaris L. cv. Pearl) in 
vegetative state V3, were placed in plastic cages 
(50 cm x 50 cm x 80 cm). Subsequently, the 
plants were infested with 60 adults of B. tabaci 
Biotype B for 24 h for oviposition. After this 
period, the adult insects were removed and the 
infested plants were placed in another plastic 
cage (50 cm x 50 cm x 80 cm) for 15 days, to 
guarantee whitefly third instar nymphs on the 
bean leaves. For the bioassays, third instar 
nymphs were used because their stylet remains 
immobile on the leaf and allows their 
manipulation [18]. 

After that, the leaflets were detached from the 
infested plants and the nymphs present on the 
leaves were selected by a marking close to the 
nymph [19]. Each treatment consisted five 
leaflets of bean, each one containing third instar 
20 nymphs of B. tabaci Biotype B. The leaflets 
were immersed in suspension containing 10 ml 
of distillated water + Tween® 20 (0.05%) + 
entomopathogenic fungi, at the concentration of 
108 conidia/ml, for 1 min.  
 
After complete drying, the leaflets were 
transferred individually to glass containers (10 
ml) and the petioles immersed in agar-water 
solution (1.5%) to maintain leaf turgidity [16]. A 
control treatment was performed by immersing 
the bean leaflets in solution containing 10 ml of 
autoclaved water + Tween® 20 (0.05%). The 
containers containing the leaflets and nymphs of 
B. tabaci Biotipe B were transferred to a glass 
cage (65 × 30 × 45 cm), with the upper opening 
covered with a "voil". The experiment was 
maintained in acclimatized room (25 ± 2 °C, 70 ± 
10% RH and 12/12 h of photophase). The 
mortality of the nymphs was characterized by the 
flaccidity and whitish coloration of the insect 
tegument. 
 
2.4 Pathogenicity Bioassays with B. 

tabaci Eggs 
 
For the pathogenicity bioassays of the fungal 
isolates to eggs of B. tabaci biotype B, the same 
procedure used in the pathogenicity tests with 
nymphs was performed. After the oviposition 
period (24 h), the adults were removed from the 
infested plants and leaflets detached from the 
bean plants. The eggs were selected by lateral 
markings, as previously described. Each 
treatment consisted of five leaflets of bean, 
containing 20 eggs of B. tabaci biotype B (<48 h 
after oviposition). After marking, the leaflets were 
immersed in suspension containing 10 ml of 
distillated water + Tween® 20 (0.05%) + 
entomopathogenic fungus, in the concentration 
of 108 conidia/ml, for 1 min.  
 
After drying, the bean leaflets containing the 
whitefly eggs were transferred individually to 
glass containers (10 ml) and the petioles 
immersed in agar-water solution (1.5%), in order 
to maintain the turgidity of the leaf [20]. Control 
treatment was performed immersing the leaflets 
in solution of 10 m of distillated water + Tween® 
20 (0.05%). The containers were maintained in 
acclimatized room (25 ± 2°C, 70 ± 10% RH and 
12/12h of photophase). Seven days after the 



immersion of the leaves in the solution with 
entomopathogenic fungi, egg mortality was 
evaluated. Mortality was confirmed by the 
necrotic eggs and fungus conidia observation, or 
by those eggs did not hatch 7 days after 
oviposition [21]. Both pathogenicity tests 
(nymphs and eggs) were performed in triplicate.
 

2.5 Virulence of the Entomopathogenic 
Fungi Isolates 

 

For virulence tests, the lethal concentration
estimated able to kill 50% of the population 
(LC50) of the B. tabaci Biotype B of each isolate 
in order to evaluated the toxicity of the fungi 
isolates against B. tabaci biotype B and to 
estimate their dose-response. All the virulence 
tests were performed according to methodology 
described previously in the pathogenicity tests for 
B. tabaci biotype B nymphs and eggs. We 
considered only the isolates that caused mortality 
above 80% of the nymphs or eggs of 
biotype B. Six concentrations of each 
entomopathogenic fungus isolate was tested 
(10

3
, 10

4
, 10

5
, 10

6
, 10

7
 and 10

8
 conidia/ml) [22].

 

2.6 Statistical Analysis 
 

The results of the eggs and nymphs mortality of 
B. tabaci was previously corrected by the 
Abbott’s formula [23]. The data were transformed 
used the arcsine square root transformation [24]. 
All the experiment were performed in a 
completely randomized design, the results were 
submitted to ANOVA test and the means were
compared by the Tukey test (P < 0.05). The LC
 

 
Fig. 1. Mortality of third instar nymphs of 

entomopathogenic fungi isolates
Columns followed by the same letter did not differ significantly from each other by the Tukey

error bars represents the standard error of th
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immersion of the leaves in the solution with 
entomopathogenic fungi, egg mortality was 
evaluated. Mortality was confirmed by the 

conidia observation, or 
by those eggs did not hatch 7 days after 
oviposition [21]. Both pathogenicity tests 
(nymphs and eggs) were performed in triplicate. 

Entomopathogenic 
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biotype B. Six concentrations of each 
entomopathogenic fungus isolate was tested 

conidia/ml) [22]. 

The results of the eggs and nymphs mortality of 
previously corrected by the 

Abbott’s formula [23]. The data were transformed 
used the arcsine square root transformation [24]. 
All the experiment were performed in a 
completely randomized design, the results were 
submitted to ANOVA test and the means were 
compared by the Tukey test (P < 0.05). The LC50 

was estimated by Probit analysis (P <0.05). All 
analysis were performed in SAS package, 
version 9.1 [25].  

 
3. RESULTS AND DISCUSSION
 
All isolates evaluated were pathogenic to third 
instar nymphs and eggs of B. tabaci
(Fig. 1 and Fig. 2). The isolates JAB07 of 
bassiana and LCMAP3790 of 
presented the greatest mortality rates, with 
mortality of 96.68 ± 2.25% and 97.74 ± 1.56% to 
third instar nymphs of B. tabaci
respectively, differentiating of the IBCB66 isolate 
of B. bassiana that cauded the lower mortality 
rate of 67.51 ± 8.11% (F = 5.07; P <0.0001) (Fig. 
1). Most of the isolates tested caused more than 
80% of eggs unviability, except for 
isolate IBCB66, that caused only 27.54 ± 2.67% 
unviability (F = 20.96; P <0.0001) (Fig

 
For B. tabaci third instar nymphs, the LC
between 0.006 and 0.217 × 10
JAB07 isolate of B. bassiana was the most 
virulent among the isolate tested (Table 1). In 
relation to eggs viability results, JAB07 isolate 
also was the most virulent, with a LC
of 0.012 × 10

3
 conidia/ml (Table 2). The best 

results aiming the B. tabaci Biotype B control ar
related with B. bassiana isolates, with mortality 
rates above 70% [16,2]. Several studies confirm 
the potential of B. bassiana for the control of 
tabaci Biotype B, that represented by the greater 
amount of products formulated worldwide for this 
pest [22,26]. 

 

1. Mortality of third instar nymphs of B. tabaci biotype B submitted to treatments with 
entomopathogenic fungi isolates 

Columns followed by the same letter did not differ significantly from each other by the Tukey test (P <0.05). The 
error bars represents the standard error of the mean (± SE) 
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Fig. 2. Unviability of eggs of 

entomopathogenic fungi isolates
Columns followed by the same letter did not differ significa

The error bars represents the st
 
Table 1. Lethal concentration (LC

nymphs of B. tabaci
 
  Fungi   Isolate n 
L. muscarium LCMAP3790 600
B. bassiana IBCB18 600
B. bassiana JAB 07 600
M. rileyi NOM1950 600

a Confidence interval with fiducial limit of 95% probability
square (P<0.05); d 95% of probability confidence interval that does not overlap indicates statistically significates 

 
Table 2. Lethal concentration (LC

tabaci biotype B
 
  Fungi   Isolate n 
L. muscarium LCMAP3790 600
B. bassiana IBCB18 600
B. bassiana JAB 07 600
M. rileyi NOM1950 600
a Confidence interval with fiducial limit of 95% probability

square (P<0.05); d 95% of probability confidence interval 

In relation to L. muscarium species, even though 
the results were very promising, reaching 
mortalities above 80%, several studies have 
demonstrated the low efficiency in whitefly 
control, with mortality varying between 20 and 
60% [14,2]. It is important to highlight that the 
genus Lecanicillium has been used worldwide as 
bioinsecticide for the control of B. tabaci
B, although with unsatisfac
[12,13,14].  
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2. Unviability of eggs of B. tabaci biotype B submitted to treatments with 
ntomopathogenic fungi isolates 

Columns followed by the same letter did not differ significantly from each other by the Tukey test (P <0.05)
The error bars represents the standard error of the mean (± SE) 

Table 1. Lethal concentration (LC50) of entomopathogenic fungi isolates applied in third instar 
B. tabaci biotype B after seven days of evaluation 

LC50 (x103 con.ml-1) CI 95%a d Slope ± SE 
600 0.023 0.018 - 0.030 0.31 ± 0.09
600 0.084 0.062 - 0.115 0.23 ± 0.05
600 0.006 0.002 - 0.012 0.20 ± 0.05
600 0.217 0.098 - 0.428 0.14 ± 0.02

a Confidence interval with fiducial limit of 95% probability; b Angular coefficient ± Standard error
d 95% of probability confidence interval that does not overlap indicates statistically significates 

differences between LC50 values 

Table 2. Lethal concentration (LC50) of entomopathogenic fungi isolates applied in eggs of 
biotype B after seven days of evaluation 

 LC50 (x10
3
 con.ml

-1
) CI 95%

a d 
Slope ± SE 

600 0.229 0.120 - 0.408 0.15 ± 0.02
600 0.244 0.110 - 0.484 0.14 ± 0.02
600 0.012 0.003 - 0.031 0.14 ± 0.02
600 0.223 0.099 - 0.446 0.14 ± 0.02

a Confidence interval with fiducial limit of 95% probability; b Angular coefficient ± Standard error
d 95% of probability confidence interval that does not overlap indicates statistically significates 

differences between LC50 values 
 

species, even though 
the results were very promising, reaching 
mortalities above 80%, several studies have 

d the low efficiency in whitefly 
control, with mortality varying between 20 and 

2]. It is important to highlight that the 
has been used worldwide as 

B. tabaci Biotype 
B, although with unsatisfactory results         

Most of the isolates of the entomopathogenic 
fungi tested caused high eggs unviability of 
tabaci Biotype B, especially B. bassiana
isolate, being the most virulent among the 
entomopathogenic fungi evaluated, with LC
estimated of 0.012 and 0.006 × 103

eggs and nymphs of B. tabaci
respectively. However, only the IBCB66 isolate of 
B. bassiana did not present ovicidal activity 
[21, 27]. 
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) of entomopathogenic fungi isolates applied in third instar 

Slope ± SE b χ² c 

0.31 ± 0.09 0.15 
0.23 ± 0.05 49.81 
0.20 ± 0.05 22.04 
0.14 ± 0.02 3.41 

b Angular coefficient ± Standard error; c χ 2=chi-
d 95% of probability confidence interval that does not overlap indicates statistically significates 

) of entomopathogenic fungi isolates applied in eggs of B. 

Slope ± SE 
b 

χ² 
c 

0.15 ± 0.02 10.59 
0.14 ± 0.02 1.78 
0.14 ± 0.02 8.76 
0.14 ± 0.02 0.98 

b Angular coefficient ± Standard error; c χ 2 = Chi-
ates statistically significates 

Most of the isolates of the entomopathogenic 
fungi tested caused high eggs unviability of B. 
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fungi evaluated, with LC50 
3 conidia/ml for 

B. tabaci Biotype B, 
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did not present ovicidal activity      
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NOM1950 isolate of M. rileyi presented high 
mortality rate and activity ovicidal of B. tabaci 
biotype B. This entomopathogen is considered 
an important biological control agent against 
insect species of the Noctuidae family 
(Lepidoptera) [28,29,30,31,32]. Additionally, this 
study evidenced high control efficiency of this 
entomopathogenic fungus against whitefly eggs 
and nymphs, demonstrating its potential as 
biological control agent of this important insect 
pest. 
 
In conclusion, JAB07 of B. bassiana and 
LCMAP3790 isolates from L. muscarium 
presented the best results for B. tabaci Biotype B 
control. Moreover, the isolate JAB07 was the 
most virulent against eggs and nymphs, 
indicating its potential for further production of 
formulated products. Initial tests to select isolates 
of entomopathogenic fungi of high virulence are 
fundamental to increase the efficiency of the 
integrated program management of this pest. 
However, other biocontrol strategies should be 
considered for effective and more sustainable 
control of the whitefly. Furthermore, future 
studies under field conditions are required, 
making it possible to analyze the real efficiency 
of these isolates, in addition to questions related 
to persistence and their compatibility with 
agrochemicals. 
 

4. CONCLUSION 
 
The JAB07 and IBCB18 isolates of B. bassiana 
and LCMAP3790 isolate of L. muscarium were 
that caused higher mortality of nymphs and eggs 
of B. tabaci biotype B.  
 
JAB07 isolate of B. bassiana was the most 
virulent for eggs and nymphs of B. tabaci biotype 
B, obtaining LC50 estimated to 0.012 and 0.006 × 
103 conidia/ml, respectively, and can be indicated 
for further field tests for the control of B. tabaci 
biotype B. 
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