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ABSTRACT 
 
This paper presents and explores the most frequent and most significant fallacies about probability 
in the medical fields. We allude to simple mathematical representations and derivations as well as to 
demonstrative calculations to expose these fallacies, and to suggest possible remedies for them. 
We pay a special attention to the evaluation of the posterior probability of disease given a positive 
test. Besides exposing fallacies that jeopardize such an evaluation, we offer an approximate method 
to achieve it under justified typical assumptions, and we present an exact method for it via the 
normalized two-by-two contingency matrix. Our tutorial exposition herein might hopefully be helpful 
for our intended audience in the medical community to avoid the detrimental effects of probabilistic 
fallacies. As an offshoot, the pedagogical nature of the paper might allow probability educators to 
utilize it in helping their students to learn by unraveling their private misconceptions about 
probability. 

Review Article 
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1. INTRODUCTION  
 
Knowledge of elementary probability concepts 
and capability to perform simple probability 
calculations are indispensable to and essential 
for both medical students and practitioners [1-6]. 
By contrast, full command of deep and profound 
probability concepts and mastery of sophisticated 
probability operations are not warranted for the 
general body of medical practitioners, despite 
being a must for those among them conducting 
medical research [7-19]. This paper is a sequel 
of our earlier recent publications [20-23] 
concerned with applications of probability and 
statistics in medicine, and is part of our ongoing 
efforts to enhance understanding of, simplify 
calculations with, and facilitate reasoning about 
probability, in general, and conditional probability, 
in particular. However, this paper differs from its 
predecessors in that it views the subject matter 
from the negative side by exploring fallacies and 
misconceptions that might jeopardize and 
degrade sound learning. 
 
The fallacies discussed herein are mistakes or 
errors (pertaining to probability), which are 
committed so frequently by many members of 
the medical community to warrant the cost of 
labeling, classifying, and exposing them. 
Knowledge of such fallacies might arm 
physicians against faulty decision making (in 
real-life situations), which, nevertheless, sounds 
deceptively agreeable and correct. Unfortunately, 
most of probability fallacies seem to be 
somewhat incorrigible, tenacious and highly 
resistant to attempts of correction or reform. 
Experimental studies show that a notable 
number of medical practitioners adhere to their 
earlier misconceptions about probability, and 
persevere in erring in probability calculations 
even after being shown ways to bypass fallacies 
while performing such calculations [2].  
 
The purpose of this paper is to present and 
explore the simplest forms of the most frequent 
and most significant fallacies of probability that 
are spread in the medical circles. We do not 
assume too much knowledge of probability for 
our readers, and we hope not to lose any reader 
by alluding to simple mathematics without giving 
and exposing such mathematics. We apologize 
to advanced readers who might find some of the 
material presented herein elementary, simplistic, 
redundant, obvious, and even easy to dispense 

with. Besides exposing probabilistic fallacies that 
arise in medical contexts, the paper serves as a 
tutorial on typical calculations encountered with 
diagnostic testing. The paper offers approximate 
calculations that are valid under mild typical 
assumptions. These approximate calculations 
are formally justified via simple mathematics, and 
are found to be in excellent agreement with exact 
calculations. The paper also uses a normalized 
contingency table to perform exact calculations 
with an extra step to check correctness of the 
calculations. Both approximate and exact 
methods are welcome additions to the arsenal of 
methods reported in [21-23] to facilitate 
calculations associated with diagnostic testing. 
 
The literature of fallacies (and associated 
misconceptions and paradoxes) in probability is 
extensive, indeed [24-52], but most of it is 
devoted to legal and judicial issues [24,31,46,50]. 
There is also a plethora of articles where the 
medical and legal domains overlap (e.g., on 
forensic science [37,38,41,45,52]). However, 
there is obviously some gap when the issue of 
fallacies concerns clinical medicine per se, and 
we hope our current contribution might bridge 
this gap, at least partially. 
 
It is well known that probability theory could be 
problematic and challenging for all users (and not 
just for laypersons) [53-57]. The subject matter of 
probability might be difficult to access for reasons 
other than fallacies, misconceptions, and 
paradoxes. There is no agreed-upon heuristic to 
translate a novel word problem of probability into 
a concrete mathematical model. Mathematical 
knowledge might not suffice for solving 
probability problems because these problems 
require insight, deep understanding, lengthy 
contemplation as well as patience and 
perseverance. Moreover, solutions of these 
problems are frequently counter-intuitive, hard to 
accept, and difficult to swallow. Another source 
of difficulty is that conditionality might be 
interpreted as causality. Occasionally, conditional 
events might be thought of unnecessarily as 
sequential events. Some puzzling, paradoxical, 
and notorious problems labeled as “teasers” [54, 
57] are also frequently encountered. These are 
either inherently-ambiguous problems such that 
they admit no solution, or ultimately-solvable 
ones but only after their mysteries are unraveled 
through “proper” partitioning of the sample space 
[56]. We stress that we are not dealing herein 
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with the solution of general probability problems 
in this paper. We restrict ourselves to simple 
well-posed probability problems of medical 
context that have already been known for some 
time and have well-established correct solutions 
in the literature, but could be mishandled by 
medical students and practitioners due to some 
inherent misconceptions or as a result of lack of 
adequate training.  
 
Due to space limitations, we restrict our 
discussion to fallacies encountered frequently in 
the medical circles. We have to leave out many 
fallacies that are well-known in other walks of life 
and other scientific disciplines. These include 
(albeit not restricted to) the Equi-probability 
Fallacy [58], the Gambler's Fallacy [33], the 
Fallacy of the Impartial Expert [24], the Efficient 
Breach Fallacy [32], the Individualization Fallacy 
[45], the Association Fallacy [46], the Defense-
Attorney Fallacy [31,51], the Uniqueness Fallacy 
[45], and the Disjunction Fallacy [59,60].  
 
The organization of the rest of this paper is as 
follows. Section 2 explores the Multiplication and 
Addition Fallacies, and as an offshoot, comments 
on basic probability formulas. Section 3 is the 
main contribution of this paper. Besides exposing 
the Inverse Fallacy, it presents a method to 
estimate P(Disease|positive test) approximately 
under typical assumptions, and also offers 
another method to evaluate this probability 
exactly via the normalized two-by-two 
contingency table. Section 3 also presents three 
illustrative examples, which are computational in 
nature and medical in context. Moreover, Section 
3 reflects on certain comments available in the 
literature on the validity of the pertaining model 
itself. Section 4 reviews the concept of an event 
being favorable to another and discusses the 
Fallacy of the Favorable Event.  Section 5 
investigates the Conditional-Marginal Fallacy and 
discusses the relations among conditional and 
marginal probabilities. Section 6 investigates 
Simpson's Paradox through it is not really a 
fallacy as such, but, being a paradox, it shares 
the problematic nature of a fallacy. Section 7 
demonstrates the Conjunction Fallacy via a 
medical example while Section 8 discusses the 
Appeal-to-Probability Fallacy. Section 9 
illustrates the drastic effects of the Base-Rate 
Fallacy by considering its effect on one of the 
examples of Section 3. Section 10 covers the 
Representative-Sampling Fallacy. Section 11 
adds some useful observations, while Section 12 
concludes the paper. To make the paper self-
contained, an appendix (Appendix A) on 

“conditional probability” is included. Any equation 
we present herein that is not generally true will 
be identified as such (in an admittedly harsh way) 
by labeling it as “WRONG.” 
 
2. MULTIPLICATION AND ADDITION 

FALLACIES 
 
The Multiplication and Addition Fallacies for two 
general events A and B amount to 
mathematically expressing the probabilities of the 
intersection and union of these two events (see 
Appendix A) as the product and sum of their 
probabilities, namely 
 

�(� ∩ �) = �(�)�(�),           (WRONG)  (1) 
  
�(� ∪ �) = �(�) + �(�).       (WRONG)  (2) 

       
The wide-spread prevalence of these fallacies is 
perhaps mainly due to the way probability is 
introduced in pre-college education. In fact, these 
fallacies are appealing because they simply 
replace set operations in the event domain by 
their arithmetic counterparts in the probability 
domain. Another possible reason for the 
popularity of these fallacies is the inadvertent 
neglect or disregard of the conditions under 
which they become valid. Equation (1) is correct 
provided the events A and B are (statistically) 
independent, while Equation (2) is exactly correct 
when the events A and B are mutually exclusive 
(� ∩ � = ∅). In particular, the addition formula (2) 
is correct if A and B are primitive outcomes or 
singletons, i.e., events comprising individual 
points of the pertinent sample space. Moreover, 
Equation (2) is approximately correct when the 
events �  and �  are independent and the 
probabilities �(�) and �(�)  are particularly very 
small. The correct versions for (1) and (2) are the 
elementary formulas [1,61]. 
 

�(� ∩ �) =  �(�|�)�(�) =  �(�)�(�|�)  (3) 
 
�(� ∪ �) =  �(�) + �(�) − �(� ∩ � )       (4) 

 
Equation (3) asserts that the fundamental 
concept of conditional probability is unavoidable, 
indeed, since statistical independence is not 
always guaranteed. Equation (3) provides 
definitions for the conditional probabilities �(�|�) 
and �(�|�)  provided �(�) ≠ 0, and �(�) ≠ 0, 
respectively. The probability �(� ∩ �) can be 
neglected (considered almost 0) in (4) so as to 
approximate (4) by (2) when the events � and � 
are independent and �(�)  and �(�)  are very 
small. However, this same probability cannot be 
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neglected in (3), even when �(�) and �(�) are 
extremely small since such an action leads to a 
catastrophic error (100% relative error), or to a 
fallacy of its own called the Rare-Event Fallacy.  
 
3. THE INVERSE FALLACY 
 
The Inverse Fallacy [7,29,31,36,40-42,47], is 
also called the Confusion-of-the-Inverse Fallacy, 
the Fallacy of the Transposed Probability, the 
Conditional-Probability Fallacy, or the 
Prosecutor's Fallacy. In this fallacy, the event A 
given B is confused with the event B given A, or 
the conditional probability �(�|�)  is considered 
(exactly or approximately) equal to the 
conditional probability �(�|�), which is called the 
inverse or transpose of the former probability 
�(�|�). This fallacy is very common in medical 
circles [2,4,23,29,40]. Let A and B denote 
{Disease is present} and {Test says that disease 
is present}, then the Inverse Fallacy, is 
manifested in believing that the test Positive 

Predictive Value ������� given by  

 

�(�|�) = � �
������� �� �������|���� ���� �ℎ�� 

������� �� �������
� 

(5) 
 

is the same as the test Sensitivity ��������. 

 

�(�|�) = � �
���� ���� �ℎ�� ������� �� �������|

������� �� �������
� 

(6) 
 
Since the former probability is typically 
substantially smaller than the latter one, this 
fallacy has grave consequences, as it means 
misinterpreting false positive test results (which 
are already bad and alarming besides being 
misleading) to make them even more disturbing 
and threatening. 
 
The two conditional probabilities �(�|�) and 
�(�|�)  are not related by the equality relation 
fallaciously assumed, but are related by Bayes' 
formula expressed by Equation (3). Therefore, 
the ratio of these two conditional probabilities is 
equal to the ratio of the unconditional or marginal 
probabilities, namely 
 
�(�|�)

�(�|�)
=

�(�)

�(�)
                                                         (7) 

 
With our earlier designation of A and B as 
{Disease is present} and {Test says disease is 
present}, the ratio in (7) is not 1 as the fallacy 
demands, but it is the ratio of True Prevalence 

P(A) (true probability of disease presence or 
such a probability according to a gold standard) 
to Perceived or Apparent Prevalence P(B) 
(probability of disease presence according to the 
test). The Perceived Prevalence P(B) is given by 
the Total Probability Formula [1, 61] as  
 

�(�) = �(�|�)�(�) + ���|������                    (8) 

 
In typical situations, a test has a nearly perfect 
Sensitivity �(�|�),  and hence we can 
approximately assume that 
 
�(�|�) ≈ 1,                                                        (9) 

 
Also the true prevalence is usually very low, and 
although we cannot assume P(A) to be zero, we 
might safely assume that  
 

���� = 1 − �(�) ≈ 1                                        (10) 

 
Therefore, Equation (8) can be rewritten 
approximately as 
 

�(�) ≈ �(�) + ���|��                                     (11) 
 

The approximation (11) does not violate the 
probability axiom {�(�) ⩽ 1}, since both P(A) and 

���|�� are known to be small compared to 1. 

However, the probability ���|�� (called the False 

Positive Rate, �����)  (albeit small) could be 

significantly larger than P(A). Hence, the 
perceived P(B) is greater (or even much greater 
than) the true prevalence P(A). This makes the 
ratio in (7) definitely smaller (usually much 
smaller) than 1. In other words, �(�|�) > �(�|�) 
(typically �(�|�) ≫ �(�|�)).  This means that in 
many cases, a test PPV is (significantly) smaller 
than its Sensitivity, and should not be mistaken 
as being equal to it. Under typical mild 
assumptions, we can assess the PPV �(�|�) 
approximately through a combination of (7) and 
(11) as 
 

�(�|�) ≈ �(�|�)
�(�)

��(�)����|���
                           (12) 

 

≈
�(�)

��(�)����|���
                                                (12a) 

 
To give a concrete example, we quote a 
celebrated problem of Gigerenzer, et al. [2], 
 

“Assume you conduct breast cancer screening 
using mammography in a certain region. You 
know the following information about the women 
in this region: 
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(a) The probability that a woman has breast 
cancer is 1% (True Prevalence) 
(b) If a woman has breast cancer, the probability 
that she truly tests positive is 90% (Sensitivity) 
(c) If a woman does not have breast cancer, the 
probability that she nevertheless tests positive is 
9% (False-Positive Rate)  
 
A woman tests positive. She wants to know from 
you whether that means that she has breast 
cancer for sure, or what the chances are. What is 
the best answer?” 
 
In this problem, we identify the given information 
in our notation as: 
 

(a) �(�) = 0.01 (True Prevalence) 
 

(b) �(�|�) = 0.90 (Sensitivity or TPR) 
 

(c) ���|�� = 0.09 (FPR) 
 

and recognize the required unknown in this 
problem as the PPV or �(�|�). We observe that 
the assumptions we made above are all valid, 
namely 
 

1. �(�) = 0.01 ≪ 1,   ���� = 0.99 ≃ 1 (14a) 

 
2. �(�|�) = 0.90 ≃ 1                           (14b) 

 

3. ���|�� = 0.09   is small but is (much) 

larger than �(�),                               (14c) 
 
Our approximate answer in (11) is 
 

�(�) ≃ 0.01 + 0.09 = 0.10,                     (15) 

while the exact answer computed by Rushdi, et 
al. [23] (for the same problem) is 0.0981. 
Correspondingly, our approximate answer in 
(12a) is 
 

�(�|�) ≈
0.01

0.01+0.09
= 0.1                       (16) 

In an experiment conducted by Gigerenzer, et al. 
[2], 160 gynecologists were requested to choose 
the best value for �(�|�)  among four given 
values  
 

(a) 0.81,    (b) 0.90,    (c) 0.10,    (d) 0.01 
 

where incorrect answers were spaced about one 
order of magnitude away from the best answer. 
Only 21% of the gynecologists found the best 

answer of 0.10 in (c) while 47% and 13% of them 
grossly overestimated the answer as 0.90 and 
0.81, respectively, perhaps falling victim to (or at 
least being influenced by) the Inversion Fallacy. 
Only 19% of the respondents underestimated the 
answer.  
 
Another example reported by Eddy [29] runs as 
follows:  
 
“The prior probability, P(ca), 'the physician's 
subjective probability', that the breast mass is 
malignant is assumed to be 1%. To decide 
whether to perform a biopsy or not, the physician 
orders a mammogram and receives a report that 
in the radiologist's opinion the lesion is malignant. 
This is new information and the actions taken will 
depend on the physician's new estimate of the 
probability that the patient has cancer. This 
estimate also depends on what the physician will 
find about the accuracy of mammography. This 
accuracy is expressed by two figures: sensitivity, 
or true-positive rate P(+ | ca),  and specificity, or 
true-negative rate P( - | benign). They are 
respectively 79.2% and 90.4%.” 
 
We choose to give a detailed analysis of this 
example via the normalized contingency table of 
Fig. 1, which summarizes our earlier findings in 
[21-23]. Substituting for the symbolic notation in 
Fig. 1, we produce a complete solution for the 
aforementioned example in Fig. 2. The results 
obtained indicate that the particularly-required 
result of P(cancer | positive test), or in our 
notation ����� = P(j=+1|i=+1) = �(�|�)  is 

0.076923 or approximately 7.7%. According to 
Eddy [29], most physicians interviewed estimated 
this posterior probability to be about 75%, i.e., 
almost ten times larger. He attributed this to the 
Inverse Fallacy, which led them to believe that 
the required probability is approximately equal to 
its transpose of P(Test positive|cancer) = P(i=+1| 
j=+1) which is given as 0.792. 
 
Boumans [62-64] criticizes the above findings, by 
questioning the validity of the model on which 
they are based. He constructs a different double-
threshold model that ultimately justifies why 
physicians tend to give high estimates for the 
posterior probability P(cancer|positive test). It 
seems that this tendency among physicians is 
excused on the grounds that two wrongs (a 
wrong model and a wrong method of calculations) 
can possibly make one right. Boumans [62-64] 
asserts that decision making in real-life situations 
is different from decision making in a laboratory 
controlled experiment. “A model of a decision

(13a) 

(13b) 

(13c) 

 



���� �⁄ = �(� = +1 ∩ � = +1) 

=����� ∗ �� 

=����� ∗ �� 

���� �⁄ = �(� = −1 ∩ � = +1) 

=����� ∗ �� 

                =����� ∗ (1 − ��) 

�(� = +1) 
=���� ���������� 

=�� 

 
Fig. 1. The normalized two-by-two contingency matrix in medical context. Symbols used are 

 

(0.792) (0.01) 
= 0.00792 

= (0.10296) (0.076923) 

0.01 – 0.00792 
= 0.00208 

0.01 

 
Fig. 2. Complete solution of the second example of Sec. 2 with the aid of the normalized 

contingency table introduced in Fig. 1. Initially known entries are highlighted in red
 

0.001 – 0 
= 0.001 

(0.05)

0 
(Assumption) 

0.999 

0.001 

 
Fig. 3. Complete solution of the third example in Sec. 2 via a normalized contingency table. 
Given data is shown in red. The assumption of FNR=0 (TPR

formulation by Casscells et al. [7]) by subsequent authors such as Westbury [4] and Sloman 

 
problem frames that problem in three dimensions: 
sample space, target probability and information 
structure. Each specific model imposes a specific 
rational decision. As a result, different models 
may impose different, even contradictory, rational 
decisions, and create choice 'anomalies' and 
'paradoxes'.” Boumans also calls for a new 
planner called “the normative statistician, the 
expert in reasoning with uncertainty par 
excellence.” Boumans also argues that 
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���� �⁄ = �(� = +1 ∩ � = −1) 

=����� ∗ (1 − ��) 

=����� ∗ �� 

�(� =
=��������� or

����������
=��

���� �⁄ = �(� = −1 ∩ � = −1) 

=����� ∗ (1 − ��) 

=����� ∗ (1 − ��) 

�(� =
=1 −

�(� = −1) 
=1 − �� 

1 

two contingency matrix in medical context. Symbols used are 
taken from [21-23] 

(1 – 0.904) (0.99) 
= (0.096) (0.99) 

= 0.09504 

0.00792 + 0.09504
= 0.102964

0.99 – 0.09504 
= 0.89496 

0.00208 + 0.8996
= 0.89740

1 – 0.01 
= 0.99 

1.00 
= 0.10296 + 0.89704

Complete solution of the second example of Sec. 2 with the aid of the normalized 
contingency table introduced in Fig. 1. Initially known entries are highlighted in red

(0.05) (0.999) 
= 0.04995 

0.001 + 0.04995
= 0.05095 

0.999 – 0.04995 
= 0.94905 

0 + 0.94905 
= 0.94905 

1 – 0.001 
= 0.999 

1.00 
= 0.05095 + 0.94905 

Fig. 3. Complete solution of the third example in Sec. 2 via a normalized contingency table. 
Given data is shown in red. The assumption of FNR=0 (TPR=1) was added (to the original 

. [7]) by subsequent authors such as Westbury [4] and Sloman 
al. [65] 

frames that problem in three dimensions: 
sample space, target probability and information 
structure. Each specific model imposes a specific 
rational decision. As a result, different models 
may impose different, even contradictory, rational 

create choice 'anomalies' and 
'paradoxes'.” Boumans also calls for a new 
planner called “the normative statistician, the 
expert in reasoning with uncertainty par 
excellence.” Boumans also argues that 

“rationality should be model-based, which means 
that not only the isolated decision
process should take a Bayesian updating 
process as its norm, but should also model the 
acquisition of evidence (priors and test results) 
as a rational process.” Essentially, statisticians 
are needed to understand medicine
than physicians are requested to make a better 
mastery of statistics. In our opinion, unity of 
science is a must, and a sound reconciliation of 
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( +1) 
or ��������

����������
 

�� 

( −1) 
�� 

two contingency matrix in medical context. Symbols used are 

0.00792 + 0.09504 
= 0.102964 

0.00208 + 0.8996 
= 0.89740 

= 0.10296 + 0.89704 

Complete solution of the second example of Sec. 2 with the aid of the normalized 
contingency table introduced in Fig. 1. Initially known entries are highlighted in red 

0.001 + 0.04995 

Fig. 3. Complete solution of the third example in Sec. 2 via a normalized contingency table. 
=1) was added (to the original 

. [7]) by subsequent authors such as Westbury [4] and Sloman et 

based, which means 
only the isolated decision-making 

process should take a Bayesian updating 
process as its norm, but should also model the 
acquisition of evidence (priors and test results) 
as a rational process.” Essentially, statisticians 
are needed to understand medicine better, rather 
than physicians are requested to make a better 
mastery of statistics. In our opinion, unity of 
science is a must, and a sound reconciliation of 
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differences among statisticians and physicians is 
highly urged. Further exploration of this subject is 
definitely warranted, albeit it seems somewhat 
beyond the scope of this paper. 
 
We close this section with a third example due to 
Casscells, et al. [7]. This example reads as 
follows: 
 
“If a test to detect a disease whose prevalence is 
1/1000 has a false positive rate of 5 per cent, 
what is the chance that the person found to have 
a positive result actually has the disease, 
assuming that you know nothing about the 
person's symptoms or signs?” 
 
Fig. 3 indicates immediately that the data given is 
not complete and must be supplemented by 
something else. The solution given in Fig. 3 is 
based on neglecting the False Negative Rate 
(FNR), and is the solution intended by those who 
posed the problem. However, the missing 
information in the example defeats the purpose 
of the experiment done by Casscells, et al. [7]. 
The physicians who resorted during that 
experiment to the Inverse Fallacy are only 
partially to be blamed, since they were forced to 
seek a means to fill in an inadvertent and 
unnecessary gap. We noted that subsequent 
authors who referred to the problem of Casscells, 
et al. [7] augmented the original formulation 
above by adding {FNR = 0} [4], or equivalently, 
{TPR = 1} [65].  
 
4. FALLACY OF THE FAVORABLE 

EVENT 
 
An event A is called favorable to another B [25, 
42] when the occurrence of A implies an increase 
in the chances B occurs, i.e.,  
 

�(�|�) > �(�)                                         (17) 

The Fallacy of the Favorable Event is to infer 
from the fact that the conditional probability 
�(�|�) is “large” that the conditional (conditioned) 
event A is favorable to the conditioning event B. 
This fallacy is so problematic that it is not even 
amenable to precise mathematical description, 
since one does not really know how “large” is 
“large.”  
  
Krämer and Gigerenzer [42] cite many examples 
in which this fallacy occurs in various contexts, 
and suggest that it is “possibly the most frequent 
logical error that is found in the interpretation of 
statistical information.” A newspaper headline 

stating that “Boys more at risk on bicycles” is 
cited [42] to be based on the report that “among 
children involved in bicycle accidents the majority 
were boys.” The writer(s) of the headline, in fact, 
observed that  
 

P(Boys|bicycle accident) is “large”            (18) 
 
and went on to conclude that  
 

�(������� ��������|����) >

�(������� ��������)                                      (19) 
 
The statement (19) is only possibly unwarranted, 
i.e., it is not necessarily false, but the fact is that 
it cannot be logically inferred from (18). 
 
The concept of “favorableness” discussed in this 
section is also involved in Simpson's Paradox [25, 
42]. In general, Simpson's paradox describes a 
phenomenon in which a trend appears in 
individual groups of data, but disappears or 
reverses when these groups are combined, or 
amalgamated [25,26,28,35,42,48]. We will 
discuss this reversal-upon-amalgamation 
paradox in Sec. 6.  
 

5. THE CONDITIONAL-MARGINAL 
FALLACY 

 

In the Conditional-Marginal Fallacy, the 
conditional probability �(�|�) is mistaken for the 
marginal unconditional probability  �(�),  or, 
equivalently (according to Eq. (7)), the inverse 
conditional probability �(�|�) is equivocated with 
�(�).  We note that this is generally fallacious 
unless the two events A and B are (statistically) 
independent. In fact, the very definition of 
independence of event A from event B is the 
requirement that �(�|�)  be equal to �(�). 
Similarly, independence of event B from event A 
is the requirement that �(�|�) be equal to �(�). 
These two definitions are equivalent, and hence, 
we do not need to refer to independence of one 
event from another, but to independence 
between the two events. Any of the following 
equivalent twelve relations can be used to 
denote (statistical) independence between 
events A and B, and can be used to 
mathematically deduce any of the other relations 
 

�(�) = �(�|�) = ���|��                               (20a) 
 

P(B) = P(B|A) = P�B|A�                              (20b) 
 

P�A� = P�A|B� = P�A|B�                              (20c) 
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P�B� = P�B|A� = P�B|A�                             (20d) 
 

P(A ∩ B) = P(A) P(B)                                       (20e) 
 

P�A ∩ B� = P(A) P�B�                                       (20e) 
 

P�A ∩ B� = P�A� P(B)                                   (20g) 
 

P�A ∩ B� = P�A� P�B�                                      (20h) 
 

In passing, we note that the multiplication rule 
(20e) is used by many authors as a definition of 
(statistical) independence of two events A and B. 
However, we stress that any of the eight relations 
in (20a) – (20d) are more intuitively appealing as 
definitions. They all convey the message that 
conditioning on an independent event is 
irrelevant, or, equivalently, that assessment of 
the probability of an event is not affected by the 
presence or absence of information about 
occurrence or non-occurrence of an independent 
event. The two relations (among these eight 
relations) that are without event complementation 
(�(�|�) = �(�)  or �(�|�) = �(�))  are the 
preferred defining methods (see, e.g., Trivedi [1] 
or Rushdi & Talmees [22]). The actual general 
relation between P(A) and �(�|�) is that either  
 

�(�|�) ⩽ �(�) ⩽ ���|��                              ( 21a) 
 
Or 
 

�(�|�) ⩾ �(�) ⩾ ���|��                            (21b) 
 
This follows from the fact that it is certain that 
either {�(�) ⩾ �(�|�)} or {�(�) ⩽ �(�|�)},  when 
this fact is combined with the two implications 
 

{ �(�) ⩾ �(�|�)} ⇒ { �(�) ⩽ ���|��}     (22a) 
 

{ �(�) ⩽ �(�|�)} ⇒ { �(�) ⩾ ���|��}   (22b) 
 
For example, the first implication can be 
ascertained by applying { �(�|�) ⩽ �(�)} to the 
Total Probability Formula  
 

�(�) = �(�|�)�(�) + ���|������             (8a) 
 
to obtain 
 

{�(�|�) ⩽ �(�)} ⇒ {�(�) ⩽ �(�)�(�) +

���|������}                                                  (23a) 
 

{�(�|�) ⩽ �(�)} ⇒ {�(�)�1 − �(�)� ⩽

���|������ }                                                     (23b) 

Nothing that ���� ≠ 0  (as guaranteed implicitly 

due to the existence of ���|��), we can divide 

both sides of the inequality in the implied part of 

Eq. (23b) by �1 − �(�)� = ���� to obtain (22a). 
 

The two inequalities (21a) and (21b) state that 
P(A) is located in an interval bounded by �(�|�) 

and ���|��,  irrespective of which is the upper 

bound and which is the lower bound. In fact, 
�(�|�) is the upper bound if B is favorable to A. 

By contrast,  ���|�� is the upper bound when 

� (rather than B) is favorable to A. When neither 

B nor � is favorable to A, A is independent of B 
(and consequently B is independent of A) and 

the interval bounded by �(�|�)  and ���|�� 

reduces to [P(A), P(A)] so that the equalities 
(20a)-(20h) hold. In a sense, the larger the 

interval bounded by �(�|�)  and ���|��,  the 

more dependent event A on event B is. When 
this interval collapses to a single point, the two 
events A and B are independent. 
 
We now revisit the first detailed example 
considered in Sec. 3. In this example, �(�) =
0.01  while �(�|�) ≈ 0.1,  which means that 
committing the Conditional-Marginal Fallacy 
while assessing �(�|�) amounts to 
underestimating �(�|�)  by one order of 
magnitude. Similarly, �(�|�) = 0.90  while 
�(�) ≃ 0.10, which means that using this fallacy 
to assess �(�) leads to a value overestimated, 
again by almost one order of magnitude. Similar 
comments might be deduced by viewing the two 
other examples in Sec. 3 and observing their 
solutions in Figs. 2 and 3.  
 

Some authors use Berkson's Fallacy (Berkson's 
Bias or Berkson's Paradox) as a name for the 
Marginal-Conditional Fallacy. However, it seems 
that Berkson's Paradox is a much more involved 
fallacy than the Marginal-Conditional Fallacy [66]. 
Berkson's Paradox asserts that two diseases 
which are independent in the general population 
may become 'spuriously' associated in hospital-
based case-control studies [66]. 
 

We devote the remaining part of this section for a 
novel visual consolidation of some of the notions 
and derivations reported herein. Fig. 4 is used to 
explore the possible relations among the events 

�, �, �, and �, by representing these events on 
area-proportional Venn diagrams. In these 
diagrams, the probability of an event is 
proportional to the area allotted for it. Contrarily 
to common practice, we do not depict the (non-
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complementary) events �  and �  as circles or 
ellipses, but draw them as rectangles or 
trapezoids. The resulting straight-line-only 
diagrams look much similar to Karnaugh maps, 
and allow areas to be assessed readily and 
exactly. Figure 4(a) represents the case when 
events �  and �  are mutually favorable (and 

consequently when events �  and �  are also 

mutually favorable, while events �  and �  are 

mutually unfavorable and events �  and �  are 
also mutually unfavorable). By contrast, Fig. 4(b) 
denies both favorableness and unfavorableness 
within any of the four pairs of events {� ,  �} , 

{�, �} , {�, �} , and {�, �} , and thereby asserts 
mutual (statistical) independence between 
members of these pairs. Finally, Fig. 4(c) 

represents the case when events �  and �  are 
mutually favorable (and consequently when 

events � and � are also mutually favorable, while 
events �  and �  are mutually unfavorable and 

events �  and �  are also mutually unfavorable). 
Mutual exclusiveness between events �  and � 
might be viewed as a case of extreme 
unfavorableness. These results are detailed in 
Table 1. 
 

6. SIMPSON'S PARADOX 
 

Simpson's Paradox occurs when the two events 
A and B enjoy the following characteristics 
 

a) They are conditionally positively correlated 
given a third event C, 

b) They are also conditionally positively 

correlated given the complement � of that 
third event, 

c) They are, however, unconditionally 
negatively correlated. 

 

These characteristics are expressed 
mathematically as [48] 
 

�(� ∩ �|�) ⩾ �(�|�) �(�|�)                        (24a) 
 

��� ∩ �|�� ⩾ ���|�� ���|��                     (24b) 
 

�(� ∩ �) ⩽ �(�) �(�)                                     (24c) 
 

with at least one of the three inequalities being 
strict. Equations (24a)-(24c) constitute a Positive 
Simpson's Reversal. Their opposites, namely 
 

�(� ∩ �|�) ⩽ �(�|�) �(�|�)                        (25a) 
 

��� ∩ �|�� ⩽ ���|�� ���|��                    (25b) 
 

�(� ∩ �) ⩾ �(�) �(�)                                     (25c) 

constitute a Negative Simpson's Reversal (again 
with at least one strict inequality) [48]. We use 
Fig. 5 for a Karnaugh-map demonstration of a 
particular case of a Negative Simpson's Reversal. 
In this figure, the Karnaugh map serves as a 
convenient and natural sample space, and 
represents a pseudo-Boolean function rather 
than a Boolean one [21]. The full sample space 
involving the three variables �, �, and � in Fig. 
5(a) is compacted via additive elimination [21] to 
the reduced one in Fig. 5(b), in which variable � 
is eliminated. Every two cells looped together in 
Fig. 5(a) are merged into a single cell (sharing 
the common values of the variables � and �  in 
the two parent cells) in Fig. 5(b). The entries in 
the two parent cells are added to produce the 
entry in the corresponding merged cell of Fig. 
5(b). Fig. 5 offers a good exercise in applying the 
definitions in Appendix A to deduce various 
probabilities from two versions of the same 
sample space. First, we note that �(� ∩ �|�) =
�

�
, �(�|�) =

�

�
, and �(�|�) =

�

�
, so inequality (25a) 

is satisfied strictly since 
�

�
=

�

��
< �

�

�
� �

�

�
� =

�

��
. 

Also ��� ∩ �|�� =
�

��
, ���|�� =

�

��
, and ���|�� =

�

��
,  so inequality (25b) is satisfied strictly since 

�

��
=

��

���
< �

�

��
� �

�

��
� =

��

���
.  Now, �(� ∩ �) =

�

��
, �(�) =

��

��
, and �(�) =

��

��
 , so that inequality 

(25c) is satisfied strictly since 
�

��
=

���

���
>

�
��

��
� �

��

��
� =

���

���
. Therefore, the situation depicted 

by Fig. 5 is a Negative Simpson's Reversal.              
We include Simpson's paradox in our current 
study though it is simply a paradox rather than a 
fallacy per se, since its intriguing nature 
contributes to the troubles (and agony!) of 
medical personnel (and even statisticians) in 
their attempts to grasp concepts of probability. 
The terminology of Simpson's Paradox can              
also be confused with those of some of the 
fallacies discussed herein such as the Favorable-
Event Fallacy and the Conjunctive Fallacy. 
Explorations of Simpson's paradox are based               
on the confounding or non-collapsibility 
phenomena or on realizing the need to use 
different analyses for identical data arising from 
different causal structures [67]. Many examples 
of Simpson's Paradox are available in the 
medical literature. In a now classical example, 
Julious and Mullee [35] report a study of two 
treatments of kidney stones in which the first 
treatment is more effective for both large and 
small stones and appears less effective when the 
data are aggregated (amalgamated) over the two 
types of stones.  
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(a) 

 

 
 

(b) 
 

 
 

(c) 
 

Fig. 4. Representation of events A and B via area-proportional Venn diagrams (The areas 
allotted to an event is proportional to its probability) 

 

7. THE CONJUNCTION FALLACY 
 
The Conjunction Fallacy considers the probability 
of the intersection of two events greater than that 
of one of the events. 
 

 �(� ∩ �) > �(�)      (WRONG)               (26) 
 
The statement in (26) is obviously wrong since a 
measure for a subset cannot be strictly larger 
than that associated with a superset. Many 
people commit this fallacy by tending to ascribe a 
higher likelihood to a combination of events, 
“erroneously associating quantity of events with 
quantity of probability.” In an experimental study 
of the Conjunctive Fallacy using medical stuff as 
the subject matter, and testing its spread among 

beginning medical students, Rao [68] presented 
the following vignette to the students. 
 
“Amelia is a 23-year-old medical student who 
comes to your office for help. You suspect she 
has a common cold. In the blank spaces below, 
based on your knowledge and experience with 
the common cold, estimate the probability that 
Amelia would experience each of the following 
symptoms or symptom combinations. For 
example, if you believe Amelia has a 100% 
chance of experiencing “b” and a 90% chance of 
experiencing “c,” put 100% and 90% in the 
respective blanks.” Options given were (a) runny 
nose and diarrhea, (b) fatigue, (c) diarrhea, (d) 
ear pain and shortness of breath, (e) sore throat, 
and (f) headache.” 
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Table 1. Possible cases of favorableness between two events and their complements 
 

Fig. Situation Equivalent verbal 
descriptions 

Equivalent mathematical 
descriptions 

4(a) �(� ∩ �) > �(�) �(�) 

��� ∩ �� < �(�) ���� 

��� ∩ �� < ���� �(�) 

��� ∩ �� > ���� ���� 

� is favorable to � 

� is unfavorable to � 
�(�|�) > �(�) > ���|�� 

� is favorable to � 

� is unfavorable to � 
�(�|�) > �(�) > ���|�� 

� is favorable to � 

� is unfavorable to � 

���|�� > ���� > ���|�� 

� is favorable to � 

� is unfavorable to � 

���|�� > ���� > ���|�� 

4(b) �(� ∩ �) = �(�) �(�) 

��� ∩ �� = �(�) ���� 

��� ∩ �� = ���� �(�) 

��� ∩ �� = ���� ���� 

� is neither favorable nor 

unfavorable to � (�) 

Equations (20) 

� is neither favorable nor 

unfavorable to � (�) 

� is neither favorable nor 

unfavorable to � (�) 

� is neither favorable nor 

unfavorable to � (�) 
� and � are independent 

4(c) �(� ∩ �) < �(�) �(�) 

��� ∩ �� > �(�) ���� 

��� ∩ �� > ���� �(�) 

��� ∩ �� < ���� ���� 

� is favorable to � 

 � is unfavorable to � 

���|�� > ���� > ���|�� 

� is favorable to � 
� is unfavorable to � 

���|�� > �(�) > �(�|�) 

� is favorable to � 
� is unfavorable to � 

���|�� > �(�) > �(�|�) 

� is favorable to � 

� is unfavorable to � 

���|�� > ���� > ���|�� 

 
Table 2. Listing of famous fallacies pertaining to probability and comparing fallacious formulas 

to correct one 
 

Fallacy Fallacious Formula Correct formula 
Multiplication Fallacy �(� ∩ �) = �(�)�(�), 

A and B are general 
�(� ∩ �) = �(�|�)�(�) 
=�(�|�)�(�) 

 
�(� ∩ �) = �(�)�(�), 
A and B are statistically independent 

Addition Fallacy �(� ∪ �) = �(�) + �(�), 
A and B are general 

�(� ∪ �)

=�(�) + �(�) − �(� ∩ �)
 

 
�(� ∪ �) = �(�) + �(�), 
A and B are mutually exclusive 

Inverse Fallacy �(�|�) = �(�|�) 
�(�|�) =

�(�)

�(�)
�(�|�) 

Conditional-Marginal Fallacy �(�|�) = �(�) 
A and B are general 

�(�|�) = �(�) 
A and B are statistically independent 

Conjunction Fallacy �(� ∩ �) > �(�) 
or 
�(� ∩ �) > �(�) 

�(� ∩ �) ⩽ �����(�), �(�)� 

The Appeal-to-Probability 
Fallacy 

{ �(�) > 0} ⇒ 
{�(�) = 1} 

{ �(�) > 0} ⇒ {�(�) ∈ (0,1]} 
trivially 

The Base-Rate Neglect �(�) = ���� = 0.5 P(A) is not necessarily equal to ���� 
Typically For medical applications when 
P(A) denotes disease prevalence 

�(�) ≪ 1, ���� ≃ 1 
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Fig. 5. Utilization of the Karnaugh map as a convenient and natural sample space to 
demonstrate Simpson's Paradox. The full sample space in (a) is compacted via additive 

elimination [21] to the reduced one in (b) 
 

(0.792) (0.5) = 0.369 
=(0.444) (0.89189) 

 
 

(1– 0.904) (0.5) 
= (0.096) (0.5) 

= 0.048 

0.396 + 0.048 
= 0.444 

0.5 – 0.396 
= 0.104 

0.5 – 0.048 
= 0.452 

0.104 + 0.452 
= 0.556 

0.5 0.5 1.0 
= 0.444 + 0.556 

 
Fig. 6. Complete solution of the second example of Sec. 2 under the Base-Rate Fallacy 

ignoring the prior knowledge of true prevalence. An extremely exaggerated value of 89.2% for 
the PPV is obtained 

 
The common cold was chosen for the vignette 
above, since entering medical students have little 
or no clinical experience but are assumed at one 
point or another to have suffered themselves 
from the common cold and would have some 
knowledge of typical and atypical symptoms. 
Runny nose is widely known to be a common 
symptom; diarrhea is not [68]. A violation of the 
conjunction rule (i.e., Conjunction Fallacy) was 
recorded if diarrhea was assigned a lower 
probability than the combination of runny nose 
and diarrhea, regardless of the absolute 
assigned probability value or the values recorded 
for the other options [68]. In the exercise, the 
mean estimate of the probability of diarrhea was 
17.2%. The mean estimate of the probability of 
the combination of runny nose and diarrhea was 
31.6%. Overall, 47.8% of the students violated 
the conjunction rule by assigning a higher 
probability to runny nose and diarrhea than to 
diarrhea alone [68]. The moral of the study in [68] 
is that teaching medical students about the 
Conjunction Fallacy and other biases in 
assessment of probability has, in theory at least, 

the potential to improve students’ decision 
making.  
 

In passing, we note that while most people tend 
to overestimate a conjunctive probability [68]. a 
majority of people are also more likely to 
underestimate a disjunctive probability, which is 
a phenomenon referred to as the Disjunction 
Fallacy [59, 60]. 
 

8. THE APPEAL-TO-PROBABILITY 
FALLACY 

 

The Appeal-to-Probability Fallacy (sometimes 
called the Appeal-to-Possibility Fallacy) equates 
a probable event to a certain one, i.e., it asserts 
that if A is not the impossible event, then it is the 
certain event  
 

{ � ≠ ∅} ⇒ {� = �}                 (WRONG)  (27a) 
or 

{ �(�) > 0} ⇒ {�(�) = 1}      (WRONG) (27b) 
 

This fallacy is perhaps committed by patients 
rather than physicians. It is particularly 
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misleading when its fallacious reasoning is 
preceded by some sort of wild guessing. A 
meticulous, doubting and suspicious person 
believes for sure that he/she definitely has a 
certain disease when he/she senses or imagines 
having some of its symptoms. Having the 
disease might (probably) be the case but cannot 
be taken for granted, and should not be assumed 
as a matter of fact. That is basically why a patient 
should seek medical help, consultation, and 
diagnosis, and why a physician should be well-
trained to meet the expectations and needs of 
the patients. The essence of the diagnosis 
process is to employ scientific methodology to 
attribute correctly-observed symptoms to their 
genuine causes. 
 

The Appeal-to-Probability Fallacy is one of 
notoriously-many logical flaws or errors [69-74] 
that might be collectively called appeal-to 
fallacies. These include Appeal to 
Accomplishment, Anger, Authority, Coercion, 
Coincidence, Common Belief, Common Sense, 
Equality, Emotion, Evidence Neglect, Expert 
Opinion, Extremes, Faith, Fear and Threat, Force, 
Human Nature, Ignorance, Intuition, Miracles, 
Misused Language, Money, Normality, Novelty, 
Pity, Popular Opinion, Ridicule, Self-Evidence, 
Stupidity, Tradition, Trust, or Wrong Reason.  
 

9. THE BASE-RATE NEGLECT 
 

Neglect of the Base Rate means substituting 

�(�) = ���� = 0.5  in the Total Probability 

Formula (8), so that this formula is inadvertently 
replaced by 
 

�(�) = ��(�|�) + ���|��� 2⁄   (WRONG)(28) 

To illustrate the grave consequences of the 
Base-Rate Fallacy, let us inadvertently disregard 
the important information given to us indicating a 
very low true prevalence of 0.01 in the first 
problem of Section 3. We instead use an 
arbitrary “true” prevalence of 0.5. Fig. 6 
represents a normalized contingency Table 
detailing the solution steps in this case. The 
answer obtained for P(Cancer|positive test) now 
becomes 0.89189 or approximately 89.2% which 
is 11.59 times the correct answer of 7.7% 
obtained earlier in Fig. 2. 
 

10. THE REPRESENTATIVE-SAMPLING 
FALLACY 

 

One of the prevailing erroneous intuitions about 
probability is the belief that a sample randomly 

drawn from a population is highly representative 
of the population, i.e., similar to the population in 
all its “essential” characteristics [75]. This leads 
to the expectation that any two samples drawn 
from a particular population to be more similar to 
one another and to the population than sampling 
theory predicts, at least for small samples. In 
fact, the law of large numbers guarantees that 
very large samples will indeed be highly 
representative of the population from which they 
are drawn. The aforementioned intuitions about 
random sampling appear to follow an alleged law 
of small numbers [75, 76], which asserts that the 
law of large numbers applies also to small 
numbers (through a presumed self-corrective 
tendency). 
 
Results of diagnostic testing, or other types of 
general experimental endeavor, are less 
“appealing” to those who obtain them when they 
are inconclusive and insignificant. By contrast, 
highly significant (and probably surprising) 
results are more informative and more desirable 
(albeit being frequently suspected to be too good 
to be true, and occasionally being thought of as 
fraudulent or fabricated). The credibility of these 
latter results, therefore, needs to be enhanced by 
replication. Contrary to a widespread belief, a 
replication sample might be required to be larger 
than the original one, and is (unreasonably) 
expected by skeptical users to be independently 
significant [75]. 
 
The Representative-Sampling Fallacy is only 
mentioned briefly herein. It is intimately related to 
fallacies and misconceptions of P values [77-90], 
which are significance levels that measure the 
strength of the evidence against the null 
hypothesis; the smaller the P value, the stronger 
the evidence against the null hypothesis [81].  
These fallacies and misconceptions are probably 
the most ubiquitous, frequently misunderstood or 
misinterpreted, and occasionally miscalculated 
indices in biomedical research [86]. The topic of 
P values belongs to somewhat advanced 
statistics and is beyond the domain of 
elementary probability, and hence lies outside 
the scope of the current paper. 
 

11. DISCUSSION 
 
The naming, definition, and classification of 
fallacies vary according to the pertinent subject 
matter, adopted framework, and intended 
audience. It is beyond the capacity of any author 
to develop a complete coverage of all types of 
fallacies. Therefore, we limited our treatment of 
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fallacies herein to medical subject matter, and 
restricted our framework to elementary (even 
simplistic) mathematics, and tailored our 
exposition to address a medical audience. Out of 
the extensive multitude of existing fallacies, we 
strived to cover a sample of the most frequently-
encountered (and hopefully, the most 
representative). We hope our work might have 
some modest contribution towards the ultimate 
desirable goal of minimization, elimination, 
removal, suppression, and eradication of 
fallacious reasoning. Without sincere correcting 
and remedial efforts, perpetuated and 
unchallenged fallacies may proliferate so as to 
comprise a dominant portion of applicable 
knowledge.  
 
Our strategy to confront fallacies herein is simply 
to unravel them from the point of view of 
elementary mathematics. There is a long history 
of research challenging such fallacies [91-96]. In 
particular, we note that Arkes [94] counts 
influence of preconceived notions among five 
impediments to accurate clinical judgment, and 
discusses possible ways to minimize their impact. 
 
In passing, we discuss some other problematic 
notions and abbreviated rules of diagnostic 
testing, which are claimed even to be 
counterintuitive and misleading or to suffer from 
definitional arbitrariness.  It is desirable that a 
diagnostic test possess high values for both 
Sensitivity and Specificity. Sensitivity is the 
probability of a positive test, given the presence 
of the disease {�(� = +1|� = +1)} , while 
specificity is the probability of a negative test, 
given the absence of the disease {�(� = −1|� =
−1}. The natural inclination among many people 
is to think that a highly-sensitive test is effective 
at identifying persons who have the disease, and 
that a highly-specific test is effective at identifying 
those without the disease. By contrast, a highly-
sensitive test is effective at ruling out the disease 
(when it is really absent), while a highly-specific 
test is effective at ruling in the disease (when it is 
really present). The following acronyms are used 
as mnemonics to help remember the 
aforementioned fact [97-100]  
 
SnOUT : If Sensitivity is high, a negative test will 
rule the disorder OUT.  
 
SpIN : If Specificity is high, a positive test will 
rule the disorder IN. 
 
These two mnemonics might be sometimes 
misleading since they seem to be concerned with 

test characteristics only and do not stress 
enough the need to know the status of the 
patient. Therefore, they are being replaced [101-
105] by the following more explicit forms, in 
which both test properties and patient status are 
specified.  
 
SnNOUT : If Sensitivity is high, a Negative test 
will rule the disorder OUT.  
(For a highly-sensitive test, a positive test result 
is not very helpful, but a negative result is useful 
for asserting disorder absence). 
 
SpPIN : If Specificity is high, a Positive test will 
rule the disorder IN. 
(For a highly-specific test, a negative test result 
is not very helpful, but a positive result is useful 
for asserting disorder presence). 
 
The assertion that: “If a test has high Sensitivity, 
a Negative result helps rule out the disease” 
might be mathematically understood as follows. If 
a person actually does have the disease 
{�(� = +1) = 1} , we would expect a highly-
sensitive test {�(� = +1|� =  +1)  ≃ 1}   to be 
positive with high probability  {�(� = +1)  ≃ 1} . 
Therefore, when a highly-sensitive test is 
negative, we can confidently assume disease 
absence (rule out the disease). Likewise, we 
interpret the assertion: “If a test has a high 
Specificity, a Positive result helps rule in the 
disease” mathematically as follows. If a person 
actually does not have the disease {�(� = −1) =
1} , we would with high probability expect a 
highly-specific test {�(� = −1|� = −1)  ≃ 1} to be 
negative {�(� = −1)  ≃ 1} . Therefore, when a 
highly-specific test is positive, we can confidently 
assume disease presence (rule in the disease). 
 

12. SUMMARY AND CONCLUSIONS 
 

We have studied probabilistic fallacies in 
medicine using simple mathematical 
representations and derivations. We summarize 
our results in Table 2, which shows the wrong 
proposition of each fallacy as well as an 
appropriate correction for it. The study made 
herein should hopefully be of significant help to 
medical students and medical practitioners alike. 
It might ensure that they acquire the necessary 
knowledge of elementary probability, but it does 
not demand that they gain too much knowledge 
that might distract them from their genuine (vital 
and critical) subject matter. It also attempts to 
remedy the notorious and grave ramifications of 
probabilistic fallacies residing as permanent 
misconceptions in their “private” knowledge 
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databases. The material presented herein could 
also be of benefit to probability educators who 
deliberately want to engage their students in the 
learning process, i.e., to guide them to be active 
learners. There are many reasons why 'active 
learning' in beneficial [106-111]. However, we 
believe that the single most important reason 
why it is so is the fact that it is the most effective 
method for unraveling misconceptions and 
eradicating fallacies. 
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APPENDIX A: ON CONDITIONAL PROBABILITY 
 
There are three important and differing interpretations of probability, namely: the empirical, the logical, 
and the subjectivistic.  Despite this disagreement on the meaning of probability, there is a widespread 
agreement on the basic axioms of the probability calculus and its mathematical structure [112]. We 
use the empirical (frequentistic or common-sense) interpretation, and base our probability notions on 
a probability “sample space” which constitutes the set of all possible (equally-likely) outcomes or 
primitive events of the underlying random “experiment.” We describe events as subsets of the sample 
space, and hence get N = 2� events for a sample space of � outcomes or sample points [1, 113]. 
Since events are sets, we can also describe events via elementary set operations (complementation, 
intersection, union, and set difference), namely: 
 

The complement � of a set � is the set of all elements of the universal set � that are not elements of �.  
The intersection � ∩ � of two sets � and � is the set that contains all elements of � that also belong to 
� (or equivalently, all elements of � that also belong to �), but no other elements. It is also the set of 

all elements of the universal set � that are not elements of � ∪ �. 
 
The union � ∪ � of two sets � and � is the set of elements which are in  �  alone, in � alone, or in 

both � and �. It is also the set of all elements of the universal set � that are not elements of � ∩ �. 
 
The difference � − �  of two sets �  and �  is the set that contains all elements of �  that are not 

elements of �.  It is also the set of elements in  � ∩ �. 
 
Since the outcomes in a sample space are equally likely, the probability �(�) of an event � is defined 
as the number of outcomes constituting � (favoring �) divided by the total number of outcomes in the 
sample space. The concept of conditional probability of event � given event � is based on the notion 
that event � replaces the universal set � as a certain event. Hence, this conditional probability is given 
by [1,6,9,21-23,113-120] 
 

�(�|�) = � (� ∩ �) �⁄ (�),           �(�) ≠ 0                                                                                      (A1) 
 
We utilize the Venn diagram and the Karnaugh map of Fig. A1 to visualize the concept of conditional 
probability. In this figure, �(�|�) can be interpreted as the ratio of two areas, provided the diagram 
and map be drawn as area-proportional. Table A1 lists the values �(�|�) for some special cases. 
Understanding these special cases is helpful for grasping the basic concepts of (and consolidating 
knowledge about) conditional probability. The case � = {�}  is typically used as a readily-
comprehensible starting point for the introduction of conditional probability. Its aggregation over a 
multitude of sample points comprising � immediately produces the general definition (A1). 
 
Conditional probability is just a probability; it satisfies the axioms of probability and it is a 
dimensionless quantity, and hence it is given by a numerical value with no unit associated with it. An 
Unconditional probability might be thought of as a probability without any restrictions, or a probability 
of an event conditioned on the certain event. We prefer to define the conditional probability �(�|�) as 
the chance that an event � occurs given that an event � occurs. Some authors might paraphrase this 
statement as “Conditional probability represents the chance that one event will occur given that a 
second event has already occurred.”  This paraphrasing imposes an unwarranted sense of 
“sequentiality” rather than that of pure “conditionality”. Unfortunately, conditional events in statistics 
sometimes become confusing if conceptualized as sequential [118].  
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Table A1. Value of the conditional probability �(�|�) in important special cases 
 
Special Case Mathematical Description Value of �(�|�) is 
� is the impossible event � = ∅  

�(�) = �(∅) = 0 
not defined 

� is the impossible event � = ∅ 
�(� ∩ �) = �(∅) = 0 

0 

� is the certain event � = �  
�(�) = �(�) = 1 

�(�) 

� is the certain event � = �  
�(� ∩ �) = �(�) 

1 

� is a singleton (primitive event) {�} 
where � is a single outcome 

(� ∩ �) equals � = {�} if � ∈ � 
and equals ∅ otherwise 

1 if � ∈ � and 0 otherwise 

� is a singleton (primitive event) {�} 
where � is a single outcome 

(� ∩ �) equals � = {�} if � ∈ � 
and equals ∅ otherwise 

�({�})/�(�) if � ∈ � and 0 
otherwise 

� and � are mutually exclusive � ∩ � = ∅ 
�(� ∩ �) = 0 

0 

� is a subset of � � ∩ � = �  
�(� ∩ �) = �(�) 

1 

� is a subset of � � ∩ � = �  
�(� ∩ �) = �(�) 

�(�)/�(�) 

� and � are independent �(� ∩ �) = �(�)�(�) �(�) 
 

 
 

Fig. A1. Definition of the conditional probability �(�|�) as the black area common to � and �, 
divided by the blue area of � (both the Venn diagram and the Karnaugh map are assumed to 

be area-proportional) 
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