Extracellular Vesicles Secreted in Response to Cytokine Exposure Increase Mitochondrial Oxygen Consumption in Recipient Cells

Russell, Ashley E. and Jun, Sujung and Sarkar, Saumyendra and Geldenhuys, Werner J. and Lewis, Sara E. and Rellick, Stephanie L. and Simpkins, James W. (2019) Extracellular Vesicles Secreted in Response to Cytokine Exposure Increase Mitochondrial Oxygen Consumption in Recipient Cells. Frontiers in Cellular Neuroscience, 13. ISSN 1662-5102

[thumbnail of pubmed-zip/versions/2/package-entries/fncel-13-00051-r1/fncel-13-00051.pdf] Text
pubmed-zip/versions/2/package-entries/fncel-13-00051-r1/fncel-13-00051.pdf - Published Version

Download (4MB)

Abstract

Extracellular vesicles (EVs) are small, membrane-bound nanoparticles released from most, if not all cells, and can carry functionally active cargo (proteins, nucleic acids) which can be taken up by neighboring cells and mediate physiologically relevant effects. In this capacity, EVs are being regarded as novel cell-to-cell communicators, which may play important roles in the progression of neurodegenerative diseases, like Alzheimer’s disease (AD). Aside from the canonical physical hallmarks of this disease [amyloid β (Aβ) plaques, neurofibrillary tangles, and widespread cell death], AD is characterized by chronic neuroinflammation and mitochondrial dysfunction. In the current study, we sought to better understand the role of tumor necrosis factor-alpha (TNF-α), known to be involved in inflammation, in mediating alterations in mitochondrial function and EV secretion. Using an immortalized hippocampal cell line, we observed significant reductions in several parameters of mitochondrial oxygen consumption after a 24-h exposure period to TNF-α. In addition, after TNF-α exposure we also observed significant upregulation of two microRNAs (miRNAs; miR-34a and miR-146a) associated with mitochondrial dysfunction in secreted EVs. Despite this, when naïve cells are exposed to EVs isolated from TNF-α treated cells, mitochondrial respiration, proton leak, and reactive oxygen species (ROS) production are all significantly increased. Collectively these data indicate that a potent proinflammatory cytokine, TNF-α, induces significant mitochondrial dysfunction in a neuronal cell type, in part via the secretion of EVs, which significantly alter mitochondrial activity in recipient cells.

Item Type: Article
Subjects: OA Digital Library > Medical Science
Depositing User: Unnamed user with email support@oadigitallib.org
Date Deposited: 29 May 2023 11:08
Last Modified: 14 Sep 2024 03:50
URI: http://library.thepustakas.com/id/eprint/1325

Actions (login required)

View Item
View Item