LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient

Lee, Jongbo and Park, Jumin and Kim, Ji-hyung and Lee, Giwook and Park, Tae-Eun and Yoon, Ki-Jun and Kim, Yoon Ki and Lim, Chunghun and Bates, Gillian P. (2020) LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLOS Biology, 18 (12). e3001002. ISSN 1545-7885

[thumbnail of journal.pbio.3001002.pdf] Text
journal.pbio.3001002.pdf - Published Version

Download (5MB)

Abstract

Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin β1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD.

Item Type: Article
Subjects: OA Digital Library > Biological Science
Depositing User: Unnamed user with email support@oadigitallib.org
Date Deposited: 04 Jan 2023 07:15
Last Modified: 17 Jun 2024 06:22
URI: http://library.thepustakas.com/id/eprint/47

Actions (login required)

View Item
View Item